
Journal of Circuits, Systems, and Computers
�c World Scientific Publishing Company

A FAST QRNS-BASED ALGORITHM FOR THE DCT AND
ITS FIELD-PROGRAMMABLE LOGIC IMPLEMENTATION

JAVIER RAMÍREZ

Department of Electronics and Computer Technology,
University of Granada,

Campus Universitario Fuentenueva
Granada, 18071, Spain

ANTONIO GARCÍA

Department of Electronics and Computer Technology,
University of Granada,

Campus Universitario Fuentenueva
Granada, 18071, Spain

Received (received date)
Revised (revised date)

Accepted (accepted date)

This paper assesses the arithmetic benefits provided by the Residue Number System
(RNS) for building Digital Signal Processing (DSP) systems with Field Programmable
Logic (FPL) technology. The quantifiable benefits of this approach are studied in the
context of a new Fast Cosine Transform (FCT) architecture enhanced by using the
Quadratic Residue Number System (QRNS). The system reduces the number of adders
and multipliers required for the N -point Discrete Cosine Transform (DCT) and provides
high throughput. For an FPL-based implementation, the proposed design gets significant
improvements over an equivalent 2C structure. By using up to 6-bit moduli, an overall
increase in the system performance of about 140% is achieved. If this speed increase is
considered along with the penalty in device resources, the presented QRNS-based FCT
system provides an improvement in the area-delay figure factor of about 20%. Finally,
the conversion overhead was carefully studied and it was found that the quantifiable
benefits of the proposed design are not affected when converters are included.

1. Introduction

The design of high-performance, high-precision, real-time Digital Signal Processing
(DSP) systems, such as those associated with Discrete Cosine Transform (DCT)
image processing, is a challenging problem. The evolution of the DSP market and
technology makes necessary considering not only cell-based Application Specific
Integrated Circuits (ASICs) but also modern Complex Programmable Logic Device
(CPLD) families, such as Altera FLEX10K [1] or Xilinx Virtex [2], in the design
and implementation of modern DSP systems.

Traditional numbering systems are commonly used to build DSP systems with
commercially available Field Programmable Logic (FPL) technology. The two’s
complement (2C) system has been adopted for a wide range of real-time applications

1

2 J. Ramı́rez & A. Garćıa

including digital communications, image, video and speech processing, multimedia
systems, networking, etc. However, a review of the FPL vendor supplied applica-
tion notes [3, 4] shows that these devices suffer from weak arithmetic performance
when compared to carefully designed standard-cell based ASICs. While FPL houses
champion their technology as a provider of system-on-a-chip (SOC) DSP solutions,
engineers have historically viewed FPL as a prototyping technology. In order for
FPL to begin to compete in areas currently controlled by low-end standard-cell ICs,
a means must be found to more efficiently implement DSP objects.

An arithmetic system capable of surmounting this barrier is the Residue Num-
ber System, or RNS [5, 6]. Computer arithmeticians have long held that the RNS
offers the best speed-area advantage in multiply and accumulate (MAC) intensive
applications [7]. This paper develops a mechanism for achieving synergy within an
FPL-defined environment to implement arithmetic intensive DSP solutions. FPL
devices are organized in channels (typically 8-bits wide). Within these channels
are found short delay propagation paths and dedicated memory blocks with pro-
grammable address and data spaces, which are commonly used to synthesize small
RAM and ROM functions. Performance rapidly suffers when carry bits and/or
data have to propagate across a channel boundary. We call this the channel barrier
problem [8]. Existing 2C designs encounter the channel barrier problem whenever
precision exceeds the channel width. An alternative design paradigm is advocated
in this paper. The advantage is gained by reducing arithmetic to a set of concur-
rent operations that reside in small wordlength non-communicating channels. The
quantifiable benefits of this approach are studied in the context of a design exam-
ple, a Fast Cosine Transform (FCT) architecture enhanced by using the Quadratic
Residue Number System (QRNS) [6]. This work will build upon previous works [9]
and RNS-FPL design studies [10].

2. Residue Number System

Some of the well-known attributes of weighted numbering systems are: i) easy
algebraic comparison, ii) dynamic range extension, iii) multiplication (division) by
simple arithmetic shifts, and iv) simplified overflow and sign detection. However,
the disadvantage of these systems is that carry information needs to be propagated
from digits of lesser significance to those of greater significance. On the contrary, the
RNS [5, 6] is a carry-free system defined in terms of a set of relatively prime moduli
{m1,m2, ...,mL}. Any integer X in the residue class Z(M), being M = m1m2...mL,
has a unique representation given by its residues {xi = X mod mi, i = 1, 2, ..., L}.
If X and Y have RNS representations given by [x1, x2, ..., xL] and [y1, y2, ..., yL],
respectively, and using � to represent +, − or ×, operations modulo M,Z = (X �Y)
mod M , are computed in parallel over reduced wordwidth integer rings and are
given by the L-tuple [z1, z2, ..., zL], where zi = (xi � yi) mod mi. Thus, a significant
throughput improvement is provided by the RNS since arithmetic is performed in
parallel over reduced wordlength, high-performance RNS channels. The individual
modular arithmetic RNS operations are normally reduced to small Look-Up Table

A Fast QRNS-based Algorithm for the DCT and its Field-Programmable Logic Implementation 3

(LUT) calls, thus resulting adequate for FPL assimilation by taking full advantage
of the built-in device resources. Moreover modulo adders [11] benefit from short
carry propagation paths and are able to reside within a logic array block in which
fast carry chains are defined, thus avoiding the propagation of carries or information
across the device routing networks [8].

2.1. Quadratic Residue Number System

An extension of RNS for complex calculus is the QRNS [6], which is defined by an
isomorphic mapping between the ring of complex integers modulo mi and Z(mi)×
Z(mi). The QRNS requires that the prime factor decomposition of mi has only
primes of the form 4Ki + 1 or, equivalently, if equation x2 + 1 can be factorized as
x2 + 1 = (x − ri)(x + ri) with ri ∈ {0, 1, ...,mi − 1}.

Let q1 + jq2 be a complex number with 0 ≤ q1, q2 < mi, and ri a root of the
equation x2 + 1 = 0 in the ring of integers modulo mi. Thus, QRNS is defined by
the isomorphic mapping:

q ≡ q1 + jq2
QRNS−→ q̄ ≡ (q̄1, q̄2)

q̄1 = |q1 + riq2|mi

q̄2 = |q1 − riq2|mi

(1)

The QRNS defines a domain transformation in which complex arithmetic is
performed with a minimum complexity. Arithmetic in the QRNS is defined as
follows:

(q̄1,q̄2)♦(p̄1,p̄2) =
(|q̄1♦p̄1|mi

, |q̄2♦p̄2|mi

)
(2)

where ♦ represents addition, subtraction or multiplication. Finally, the inverse
QRNS mapping is defined as:

(q̄1, q̄2)
QRNS - 1

−→ q1 + jq2

q1 =
∣∣∣ 2−1 (q̄1 + q̄2)

∣∣∣
mi

q2 =
∣∣∣ (2ri)

−1 (q̄1 − q̄2)
∣∣∣
mi

(3)

Thus, RNS-to-QRNS and QRNS-to-RNS conversion only require one adder, one
subtractor and one LUT each. According to (2), a clear advantage of the QRNS
is that a complex integer multiplication operation requires only two modular oper-
ations that can be performed in parallel over reduced wordwidth modular integer
rings. However, a disadvantage of the QRNS is the hardware overhead introduced
by conversion. It has been shown that, for fully parallel high-order DSP systems,
the area overhead is maintained below 10% while speed is not affected when output
converters are inserted in the system if an adequate design is used [12].

3. Design of the QRNS-enabled FCT processor

The DCT [15, 16] is a subject of study of modern digital image processing tech-
nology. Its inclusion in standards for image and video compression, such as JPEG

4 J. Ramı́rez & A. Garćıa

or MPEG, as the transform-coding technique, has motivated an increasing interest
and numerous contributions have been proposed focusing on its fast implementation
with reduced hardware complexity. Interest in the DCT derives from the fact that
it approaches the statistically optimal Karhunen-Loeve Transform (KLT) providing
a more efficient computational framework [16]. The DCT was introduced in 1974
by Ahmed [15] and, for an N -point sequence x(n), is defined as:

X(m) =
√

2
N Km

N−1∑
n=0

x(n) cos
(

(2n+1)mπ
2N

)
m = 0, 1, ..., N − 1

K0 = 1√
2

K1 = K2 = ... = KN−1 = 1
(4)

Algorithms for the fast computation of the Discrete Fourier Transform (DFT)
have been widely used to compute the DCT [15, 17-19]. Ahmed [15] introduced
the first algorithm to compute the N -point DCT through the DFT of a 2N -point
sequence. Haralick [17] showed that the N -point DCT could be computed with two
N -point FFTs thus reducing the number of complex MAC operations. Tseng and
Miller [18] proposed an algorithm with only N/2·(log2N+1) complex operations.
Narashima and Peterson [19] have proposed a more efficient algorithm based on
a rearrangement of the input sequence that requires (N ·log2N–N+1)/4 complex
multiplications. Furthermore, several papers have shown the advantages of the
RNS for the computation of the DCT and other discrete transforms [20-22]. In
order to overcome the disadvantage of using complex arithmetic for those FFT-
based algorithms, the use of QRNS [6] arithmetic is examined in this paper. The
advantages of QRNS are RNS-like speed and reduced multiplication complexity.
This paper will show a QRNS-based VLSI architecture to compute the N -point
DCT with a reduction in hardware complexity and sustained performance increase.

3.1. DCT algorithm

The algorithm for the computation of the DCT using the QRNS is presented below.
Initially, the N -point integer input sequence x(n) is reordered as the sequence y(n)
defined by:

y (n) = x (2n) n = 0, ..., N
2 − 1

y (N − n − 1) = x (2n + 1) (5)

The DCT sequence, namely X(m), defined by equation (4), can be formulated
as:

X(m) =
N/2−1∑

n=0

y(n) cos
[
(4n + 1)mπ

2N

]
+

N/2−1∑
n=0

y(N − n − 1) cos
[
(4n + 3)mπ

2N

]

(6)
It can be shown [19] that the transformed sequence, X(m), can be computed by

means of an N -point scaled DFT sequence. Let Y (m) be the DFT of the sequence

A Fast QRNS-based Algorithm for the DCT and its Field-Programmable Logic Implementation 5

y(n). Thus, X(m) is obtained through the real part of Z(m), defined as follows:

Z (m) = HmY (m) =
√

2
N KmWm

4NY (m) Wm
4N = e

- j 2πm

4N

K0 = 1√
2
K1 = K2 = = KN−1 = 1

(7)

The algorithm described above, in opposition to other proposals [15, 17, 18],
reduces efficiently the DCT computation to a single N−point DFT calculation and
only needs to compute (N ·log2N−N+1)/4 complex MAC operations when a radix-2
FFT algorithm is used. Note that if the following property:

Z(N − m) = −jZ∗(m) ⇐⇒ Re[Z(N − m)] = −Im[Z(m)] (8)

is used, it is only necessary to compute N/2+1 values of the sequence Z(m). In
order to minimize the number of multiplications required, we have proposed the set
of N/2+1 points {Z(0), Z(1), ..., Z(N/4), Z(N/2), Z(N/2+1), ..., Z(3N/4-1)}.
With this set, N−3 fewer complex adders and N/2-2 fewer complex multipliers need
to be computed and, finally, using the relation given in equation (8), the N -point
DCT of the input sequence x(n) is given by {Re[Z(0)], Re[Z(1)], ..., Re[Z(N/4)], -
Im[Z(3N/4-1)], −Im[Z(3N/4-2)], ..., -Im[Z(N/2+1)], Re[Z(N/2)], Re[Z(N/2+1)],
..., Re[Z(3N/4-1)], -Im[Z(N/4)], -Im[Z(N/4-1)], ..., −Im[Z(1)]}.

Thus, the DCT is obtained by means of a highly efficient algorithm in two
steps:

(i) compute the DFT of the reordered sequence using a radix-2 Decimation In
Frequency (DIF) FFT algorithm and,

(ii) multiply by the necessary scaling factors.

Step (i) is simplified by using the relation shown in equation (8), while scaling by
the Hm coefficients is only required for N/2+1 output values.

3.2. QRNS-DCT merged architecture

The computation of the DCT using conventional 2C arithmetic and the algorithm
described above requires a large number of binary additions and multiplications.
This drawback can be overcome by taking advantage of the arithmetic benefits
provided by the QRNS. The architecture for a prearranged dynamic range is com-
posed of a number of parallel channels with moduli satisfying the QRNS mapping
requirements. Fig. 1 shows the QRNS channel architecture needed to compute the
8-point DCT. The array is based on the radix-2 DIF FFT [23, 24] algorithm, which
benefits from regular connections between intermediate processing stages. As it was
previously mentioned, it is only necessary to compute five values of the Z(m) se-
quence: Z(0), Z(1), Z(2), Z(4) and Z(5). Because of this algorithm simplification,

6 J. Ramı́rez & A. Garćıa

shadowed components in the figure are eliminated from signal paths.

Fig. 1. QRNS-based radix-2 DIF FFT architecture for the 8-point DCT.

This structure, when compared to traditional FFT architectures, replaces com-
plex binary adders and multipliers by QRNS adders and multipliers. Each QRNS
adder, subtractor, or multiplier consists of two modular adders, subtractors, or mul-
tipliers, respectively. Since the input sequence and many of the twiddle factors are
real, there are QRNS arithmetic modules in the array that have real inputs and,
thus, can be reduced to a single modular adder, subtractor or LUT. A QRNS but-
terfly, shown in Fig. 2, consists of an adder, a subtractor and a constant coefficient
modular multiplier. These arithmetic modules are easily mapped onto hardware
providing the best area-speed performance.

3.3. Complexity analysis

Regarding the 1-D DCT computation, the fact that the input sequence is real
reduces each QRNS adder/subtractor with real inputs to only one real RNS adder
/subtractor. In addition, each real twiddle factor multiplier with real input requires
only one modular multiplier.

A direct calculation of the binary adders (BA), binary multipliers (BM), mod-
ular adders (MA) and modular multipliers (MM) required to compute the N -point

A Fast QRNS-based Algorithm for the DCT and its Field-Programmable Logic Implementation 7

1-D DCT leads to:

BA = (3N − 1)(log2 N − 1) − 2A + 10
BM = (2N − 1)(log2 N − 1) − A + 9
MA = (2N − 1)(log2 N − 1) − A + 6

MM = (N − 1)(log2 N − 1) + 5

(9)

where A, the number of real input QRNS additions, is:

A =
log2 N∑

i=1

2i (10)

Table 1 shows the number of real binary additions and multiplications required
for the computation of the binary 8-point and 16-point DCTs, as well as the modular
additions and modular multiplications required by each channel of the proposed
QRNS alternative. QRNS provides a reduction in the number of operations required
while maintaining the speed advantage of the RNS. Reduction in the additions
required is 21% and 24% for the 8- and 16-point DCTs, respectively, while the
reduction in the multiplications required is 24% and 31%.

Fig. 2. Design of QRNS-based radix-2 DIF FFT butterflies.

It is interesting to analyze accurately the complexity of a QRNS-based design
in terms of a radix-2 FFT butterfly. Fig. 2 shows the best implementation of such
a system. For modulo adders and subtractors, a two-stage CPA (carry propagate
adder)-based design [11] is normally the best choice and requires 2(n+1) FAs (full

8 J. Ramı́rez & A. Garćıa

Table 1. Arithmetic operations required by 2C and QRNS DCT processors.

N
Additions Multiplications
2C QRNS 2C QRNS

8 28 22 25 19
16 91 69 72 50
N (3N -1)(log2N -1)-

2A+10
(2N -1)(log2N -1)-
A+6

(2N -1)(log2N -1)-
A+9

(N -1)(log2N -
1)+5

adders) and one multiplexor, with n being the modulus width. A more complex
design computes the two possible results in parallel and uses carry save adders
(CSAs) for the three-term summation. It requires n+1 FAs, an n-bit CSA and
one multiplexor. This design has a short delay but it requires more resources, thus
resulting only appropriate for an ASIC design since, normally, for FPL devices carry
chains provide the best area-speed performance. For the two modulo multipliers
of the radix-2 butterfly, LUTs are the best option. Multiplication by the twiddle
factors is reduced to a LUT call and built using high-speed small ROMs. Fig. 2
shows the design of the LUT-based multiplier for 5- and 6-bit modulus. The 25×5
and 26×6 tables are built with smaller LUTs and multiplexors to take advantage of
the FPL target technology. In this way, the 25×5 LUT requires two 24×5 LUTs (5
logic elements, LEs) and a multiplexor, while the 26×6 LUT needs four 24×6 LUTs
(6 LEs) and three multiplexors. For smaller moduli it is not required to break
the table, while for larger moduli, up to 8-bit wide, other built-in FPL memory
resources become available. Moreover, this procedure does not result optimal only
for FPL-centric designs, but it is equally interesting for standard-cell-based VLSI
CMOS chips [25].

4. RNS-FPL synergic implementation

As it was argued in the introduction section, FPL devices suffer from weak arith-
metic performance when compared to standard cell VLSI technology. When the
implementation of a 2C multiplier using an Altera FLEX10K reference device is
considered, speed is affected by the increasing precision. Even with an adequate
segmentation, speed limitations are caused by the increasing length of carry chains
[3, 4]. This drawback represents a serious implementation obstacle for most of the
emerging DSP systems demanding high-precision and high-performance real-time
data processing. RNS arithmetic modules are able to operate at higher data rates.
Fast RNS-FPL merged adders have been proposed recently [8]. In this paper, new
QRNS-FPL arithmetic modules are defined and the implementation of the widely
used 8-point FCT is carried out to assess the advantages and disadvantages of the
proposed methodology. In order to facilitate efficient RNS-centric FPGA designs,
a collection of RNS VHDL models for modular adders, QRNS arithmetic modules
and RNS converters were developed for the Altera FLEX10K target technology,
specifically for FLEX10KE devices. The resources found in these devices are ideal
for RNS-based systems. Modulo adders are defined within short carry chains logic
array blocks (LABs) (8-bit long), pipelining does not require additional resources

A Fast QRNS-based Algorithm for the DCT and its Field-Programmable Logic Implementation 9

and memory blocks (providing up to 4096 bits) are optimal to implement LUT calls
at high speed.

The implementation of an 8-point FCT processor was considered because of its
wide use in image and video coding systems including JPEG and MPEG standards
for multimedia applications. The QRNS-based 1-D DCT processors was built on a
FPGA-based system by means of a defined RNS-FPL VHDL model optimised for
the FLEX10K target technology. The VHDL high-level synthesis of an equivalent
2C design was carried out to assess hardware requirements and compare throughput.
The 8-point input sequence {x(n)} (n= 0, 1, . . . , 7) was initially represented with 8-
bit precision, while complex twiddle factors and scale factors were represented with
10-bit precision. The wordwidth was extended as required in each stage, obtaining
a final 32-bit dynamic range output sequence. The resulting QRNS architecture
is shown in Fig. 1, commented above, and makes use of the FPL-enhanced QRNS
butterfly shown in Fig. 2. Two different alternatives were used for the QRNS-based
system. The first option takes advantage of the built-in EABs (Embedded Array
Block) providing up to 4K-bit LUTs for high-speed modulo multiplication . The
32-bit dynamic range of the system is ensured by using four 8-bit moduli {221, 229,
233, 241}, with roots {47, 107, 89, 177} for the QRNS isomorphic mappings (1)
and (3), respectively. 8-bit modulus channels were selected in order to provide fast
internal QRNS processing. Thus, it is previously necessary to convert the 8-bit real
inputs to the QRNS. According to (1), conversion of a real integer to the QRNS is
easily simplified to just a residue computation only requiring one 8-bit comparator
and one 8-bit subtractor [9]. An alternate design does not make use of embedded
memory blocks and reduce the modulus wordwidth to a maximum of six bits. Thus,
the 2n × n LUTs are synthesized through a number of 24 × n LUTs (requiring only
n LEs) and a multiplexing scheme similar to that shown in Fig. 2. For the binary-
to-RNS conversion, input-block decomposition was used. 4-bit blocks were found
to be an attractive choice, since it allows the direct mapping of the converter LUTs
on LEs.

Table 2. Throughput and resource usage for both 2C and QRNS 1-D DCT processors.

2C QRNS
stages (scaling multiplier) Modulus set
1 2 3 4 {221, 229,

233, 241}
{53, 41, 29,
25, 17, 13, 5}

#LEs 2602 2579 2629 2879 4×672 5449
#EABs - - - - 4×14 -

F(MHz)

-1 grade 32 52 65 71 130 167
-2 grade 27 43 52 59 98 141
-3 grade 20 31 38 43 70 108

Table 2 compares the QRNS-based FCT processor with the 2C equivalent sys-
tem. The table includes the resources required for both structures and their maxi-
mum operating frequency. For a 2C design, pipelined constant coefficient multipli-
ers were used. The synthesis process followed Altera’s recommendations, but it was
noticed that performance rapidly degrades because of the carry propagation delays

10 J. Ramı́rez & A. Garćıa

across the multiplier. Even with a deep segmentation strategy, the 2C version was
found to be much slower than the proposed QRNS-based FCT system. Particularly,
the maximum operating frequency of a 2C design with 4-stage pipelined scaling mul-
tipliers was found to be 71, 59 and 43 MHz for –1, –2 and –3 speed grade FLEX10KE
devices, respectively. For the proposed QRNS-based FCT processors, two-modulus
set were explored: i) 8-bit moduli, and ii) an unbalanced modulus set consisting
of up to 6-bit moduli. For the first modulus set, the 28×8-bit LUT multipliers are
mapped on EABs. Since each EAB provides a double precision 28×16-bit LUT and
some of the multipliers have the same address, the 19 multipliers of the system re-
quired only 14 EABs. The system can operate at 130, 98 and 70 MHz for –1, –2 and
–3 speed grade FLEX10KE devices, respectively. Thus, the proposed QRNS-based
processor is 83%, 66% and 63% faster than a classical 2C implementation for the
studied speed grades. However, this QRNS-enabled system requires a considerable
number of EABs. In order to palliate this drawback and to maximize the through-
put of the system, a second option was explored. This alternative uses up to 6-bit
moduli with the LUTs being mapped on LEs by decomposing the LUT multipliers
in 24 × n LUTs, where n is the modulus width in bits. Thus, the system is synthe-
sized using only LEs and speed is increased to 167, 141 and 108 MHz for –1, –2 and
–3 speed grade devices, respectively. In this case, the overall increase of the system
performance is 135%, 139% and 151% over equivalent 2C processors. On the other
hand, if the speed increase is considered along with the penalty in device resources,
the QRNS-based FCT system provides an increase in the area-delay figure factor of
about 23%, 21% and 15% for –1, –2 and –3 speed grade devices, respectively. The
practical implementation of RNS-based systems encounters a serious difficulty in
the conversion stage. Different solutions were addressed to overcome the conversion
drawback. Binary-to-RNS and RNS-to-QRNS conversions are fast operations. Ac-
cording to (1) and (2), RNS-to-QRNS and QRNS-to-RNS conversions only require
one adder, one subtractor and one LUT. However, conversion from RNS to binary
implies the use of 32-bit modular adders and large multipliers. Thus, a direct imple-
mentation of the Chinese Remainder Theorem (CRT) results in excessive hardware
usage and considerable performance degradation. The auto-scaling RNS-to-binary
converter (ε-CRT) [12], originally reported in [13] and later discussed in [14], allows
to overcome these drawbacks using only LUTs and conventional binary adders. In
this way, for a scaled n-bit binary output and a k-bit modulus, this converter needs
one 2k × n LUT per modulus and a binary n-bit adder tree to add the LUT out-
puts. Table 3 shows hardware requirements for this converter when mapped on –1,
–2 and –3 speed grade Altera FLEX10KE devices. Concretely, ε-CRT converters
with 24-, 16- and 8-bit outputs operate at 135.13 MHz in a –1 speed grade device
by means of a 3-, 2- and 1-stage pipelined adder tree, respectively. Moreover, it was
found that the converters surpass the performance of the QRNS architecture for
all the considered speed grades and precisions. On the other hand, if serial output
converters are used, 321 LEs and 9 EABs are required for a 24-bit output while for
16- and 8-bit output converters, only 163 LEs and 4 EABs or 56 LEs and 4 EABS

A Fast QRNS-based Algorithm for the DCT and its Field-Programmable Logic Implementation 11

are needed, respectively. Thus, simulations showed that the high performance of
the proposed QRNS-based DCT architecture is not degraded when converters are
added.

Table 3. Implementation of auto-scaling ε-CRT RNS-to-2C converter.

Different output precision ε-CRT converters
{221, 229, 233, 241} {53, 41, 29, 25, 17, 13, 5}

24-bit 16-bit 8-bit 24-bit 16-bit 8-bit
#LEs 321 163 56 898 548 248

#EABs 9 4 4 - - -

5. Conclusion

This paper considers the design and implementation of FCT architectures using the
QRNS and FPL technology. To achieve maximum performance, a new algorithm
was developed and its efficient implementation on FPL devices was shown. With
this, and other innovations, the presented QRNS architecture was shown to be well
suited for integrating digital image processing systems within FPL devices. To
assess the improvement of the proposed methodology, an 8-point DCT was used as
a standard. For that concrete processor, the proposed FCT architecture reduces
the number of arithmetic instances and, when area and speed are compared to a
classical 2C implementation, it leads to a 140% improvement in speed, while the
area-delay figure factor is about 20% better. Finally, the conversion overhead was
carefully assessed and the conducted simulations showed that the hardware-speed
benefits provided by this system are not affected when optimized converters are
included.

Acknowledgements

The authors were supported by the Comisión Interministerial de Ciencia y Tec-
noloǵıa (CICYT, Spain) under project PB98-1354. CAD tools and supporting ma-
terial were provided by Altera Corp., San Jose, CA, under the Altera University
Program.

References

1. Altera Corp., “FLEX10K Embedded Programmable Logic Device Family v. 4.1”,
http://www.altera.com/literature/ds/dsf10k.pdf. (2001).

2. Xilinx Inc., “Virtex 2.5V Field Programmable Gate Arrays Data Sheet v. 2.6”
http://www.xilinx.com/partinfo/ds003-2.pdf. (2001)

3. Altera Corp., “Implementing FIR Filters in FLEX Devices v.1.01”,
http://www.altera.com/literature/an/an073.pdf. (1998) .

4. Xilinx Inc., “Transposed Form FIR Filters v. 1.2”,
http://www.xilinx.com/xapp/xapp219.pdf. (2001).

5. N. S. Szabo and R. I. Tanaka, Residue Arithmetic and Its Applications to Computer
Technology, McGraw-Hill, NY, 1967.

12 J. Ramı́rez & A. Garćıa

6. M. A. Soderstrand, W. K. Jenkins, G. A. Jullien and F. J. Taylor, Residue Number
System Arithmetic: Modern Applications in Digital Signal Processing, IEEE Press, 1986.

7. F. J. Taylor, “Residue arithmetic: a tutorial with examples”, IEEE Computer, 17 (5)
(1984) 50–62.

8. U. Meyer-Bäse, A. Garćıa and F. J. Taylor, “Implementation of a Communications
Channelizer using FPGAs and RNS Arithmetic”, Journal of VLSI Signal Processing,
28 (1/2) (2001) 115–128.

9. J. Ramı́rez, A. Garćıa, P. G. Fernández, L. Parrilla and A. Lloris, “A New Architecture
to Compute the Discrete Cosine Transform using the Quadratic Residue Number Sys-
tem”, Proc. of the 2000 International Symposium on Circuits and Systems, (5) (2000)
321–324.

10. J. Ramı́rez, A. Garćıa, P. G. Fernández, L. Parrilla and A. Lloris, “RNS-FPL Merged
Architectures for Orthogonal DWT”, Electronics Letters, 36 (4) (2000) 1198–1199.

11. M. Dugdale, “VLSI Implementation of Residue Adders Based on Binary Adders”, IEEE
Transactions on Circuits and Systems II, 39 (5) (1992) 325–329.

12. M. Griffin, F. J. Taylor and M. Sousa, “New scaling algorithms for the Chinese Re-
mainder Theorem”, Proceedings of the 22nd Asilomar Conference on Signals, Systems
and Computers, (1988).

13. I. Ja. Akushskii, V. M. Burcev and I. T. Pak, “A new positional characteristic of
nonpositional codes and its applications”, Coding Theory and Optimization of Complex
Systems (1977).

14. J. Gonella, “The application of core functions to residue number systems,” IEEE Trans-
actions on Signal Processing, 39 (1) (1991) 284–288.

15. N. Ahmed, T. Natarajam and K. R. Rao, “Discrete Cosine Transform”, IEEE Trans-
actions on Computers, 23 (1), (1974) 90–93.

16. K. R. Rao and P. Yip, Discrete Cosine Transforms. Algorithms, Advantages, Applica-
tions, Academic Press. Inc , (1990).

17. R. M. Haralick, “A Storage Efficient Way to Implement the Discrete Cosine Transform”,
IEEE Transactions on Computers, 25 (6) (1976) 764–765.

18. B. D. Tseng and W. C. Miller, “On Computing the Discrete Cosine Transform”, IEEE
Transactions on Computers, 27 (10), (1978) 966–968.

19. M. J. Narashima and A. M. Peterson, “On the Computation of the Discrete Cosine
Transform”, IEEE Transactions on Communications, (26), (1978) 934–946.

20. V. S. Dimitrov, G. A. Jullien and W. C. Miller, “A Residue Number System Imple-
mentation of Real Orthogonal Transforms”, IEEE Transactions on Signal Processing,
46 (3), (1998) 563–570.

21. A. L. Bequilard and S. D. O’Neil, “Systolic RNS computation of the two-dimensional
DCT in a ring of algebraic integers”, Proceedings of the 20th Annual Conf. Inform. Sci.
Syst., (1986).

22. P. G. Fernández, A. Garćıa, J. Ramı́rez, L. Parrilla and A. Lloris, “A New Implemen-
tation of the Discrete Cosine Transform in the Residue Number System”, Proceedings
of the 33rd Asilomar Conference on Signals, Systems and Computer, (2), (1999) 1302–
1306.

23. V. Boriakoff, “FFT Computation with Systolic Arrays, A New Architecture”, IEEE
Transactions on Circuits and Systems II, 41 (4) (1994) 278–284.

24. J. Choi and V. Boriakoff, “A New Linear Systolic Array for FFT Computation”, IEEE
Transactions on Circuits and Systems II, 39 (4) (1992) 236–239.

25. J. Ramı́rez, P. G. Fernández, U. Meyer-Bäse, F. Taylor, A. Garćıa, A. Lloris, “Index-
based RNS DWT Architectures for Custom IC Designs”, Proc. of the IEEE Workshop
on Signal Processing Systems, (2001) 70–79.

