
Journal of VLSI Signal Processing 33, 171–190, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Implementation of RNS-Based Distributed Arithmetic Discrete Wavelet
Transform Architectures Using Field-Programmable Logic

JAVIER RAMÍREZ AND ANTONIO GARCÍA
Departamento de Electrónica y Tecnologı́a de Computadores, Campus Universitario Fuentenueva,

University of Granada, 18071 Granada, Spain

UWE MEYER-BÄSE
Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, Tallahassee,

FL 32310-6046, USA

FRED TAYLOR
High-Speed Digital Architecture Laboratory, Electrical and Computer Engineering, Computer and Information

Science Engineering, University of Florida, Gainesville FL, 32611-6130, USA

ANTONIO LLORIS
Departamento de Electrónica y Tecnologı́a de Computadores, Campus Universitario Fuentenueva,

University of Granada, 18071 Granada, Spain

Received October 27, 2000; Revised July 12, 2001

Abstract. Currently there are design barriers inhibiting the implementation of high-precision digital signal pro-
cessing (DSP) objects with field programmable logic (FPL) devices. This paper explores overcoming these barriers
by fusing together the popular distributed arithmetic (DA) method with the residue number system (RNS) for
use in FPL-centric designs. The new design paradigm is studied in the context of a high-performance filter bank
and a discrete wavelet transform (DWT). The proposed design paradigm is facilitated by a new RNS accumulator
structure based on a carry save adder (CSA). The reported methodology also introduces a polyphase filter structure
that results in a reduced look-up table (LUT) budget. The 2C-DA and RNS-DA are compared, in the context of a
FPL implementation strategy, using a discrete wavelet transform (DWT) filter bank as a common design theme.
The results show that the RNS-DA, compared to a traditional 2C-DA design, enjoys a performance advantage that
increases with precision (wordlength).

Keywords: field-programmable logic, residue number system, distributed arithmetic, discrete wavelet transform,
digital signal processing

1. Introduction

Digital signal processing (DSP) is arithmetic-intensive.
DSP-facilitating technologies include general-purpose
microprocessors, application-specific integrated cir-

cuits (ASIC), application specific standard products
(ASSP), and field programmable logic (FPL) devices
that include field programmable gate arrays (FPGA).
Within this mix, ASIC are becoming the dominant
technology with the Y-2000 DSP CBIC (cell-based

172 Ramı́rez et al.

integrated circuit) ASIC market valued in excess of
$13B, compared to $8B for DSPs. The FPL ASIC
market is expected to expand at a rate of 20% per
annum rate, with DSP applications leading the way.
While FPL houses champion their technology as a
provider of system-on-a-chip (SOC) DSP solutions,
engineers have historically viewed FPLs as a proto-
typing technology. It should be noted that 40% of the
current FPL design starts are rated at 1,500 gates. This
figure falls well below the reported 50,000+ gates that
account for 50% of standard cell ASIC designs [1].
When one considers that an FPGA typically requires
10× more gates than a CBIC to implement a com-
mon logic function, a typical 50 k gate standard cell
ASIC design would require a large 500 k gate FPGA.
In order for FPL to begin to compete in areas cur-
rently controlled by low-end standard cell, a means
must be found to more efficiently implement DSP
objects.

A review of FPL vendor supplied application notes,
establishes that FPGAs have intrinsically weak arith-
metic capabilities. A general-purpose n × n-bit mul-
tiplier or multiply-accumulate (MAC) unit, for exam-
ple, is inferior to a well designed ASIC ALU in both
speed and area [2]. In addition, FPL deficiencies in-
crease geometrically with precision (wordlength). It
is the FPGA’s arithmetic limitations that have caused
solution developers to consider alternative structures.
The most popular technique, found in common prac-
tice, is called distributed arithmetic [3–6], or DA. The
DA method is routinely used to implement linear DSP
algorithms with fixed known a priori coefficients. The
DA technique reduces an algorithm to a set of sequen-
tial lookup table (LUT) calls, and two’s-complement
(2C) shift-adds. A survey of the contemporary FPL
DA art indicates that most solutions are of low-order
and low-precision. The reported FPL limitations are the
result of architectural limitation. FPL device families,
such as Altera FLEX10K [7] or XILINX Virtex [8], are
organized in channels (typically 8-bits wide). Within
these channels are found short delay propagation paths,
and dedicated memory blocks, with programmable ad-
dress and data spaces that are commonly used to syn-
thesize small RAM and ROM functions. Performance
rapidly suffers when carry bits and/or data have to
propagate across a channel boundary. We call this the
channel barrier problem. Existing 2C-DA designs en-
counter the channel barrier problem whenever word-
widths exceed the channel width in bits. An alterna-
tive design paradigm is advocated in this paper that is

based on fusion of DA and the residue number sys-
tem or RNS [9–11]. The RNS advantage is gained by
reducing arithmetic to a set of concurrent operations
that reside in small wordlength non-communicating
channels. This attribute makes the RNS potentially at-
tractive for implementing DSP objects with a FPL.
Specifically, the paper develops a mechanism of achiev-
ing synergy within an FPL-defined environment for
implement arithmetic intensive DSP solutions. The
quantifiable benefits of this approach are studied in the
context of a design example, namely a discrete wavelet
transform (DWT) filterbank using an Altera FLEX10K
FPL reference device. The work will build upon pre-
vious works [12–15] and RNS-FPL design studies
[16–19].

2. Background

There is emerging evidence that an arithmetic technol-
ogy, called the RNS, can overcome the channel barrier
and become a FPL enabling technology [20–22]. Com-
puter arithmeticians have long held that the RNS offers
the best MAC speed-area advantage [9]. In the RNS,
numbers are represented in terms of a relatively prime
basis set (moduli set) P = {m1, . . . mL}. Any number
X ∈ Z M = {0, . . . , M − 1}, where M = �mi , has
a unique RNS representation X ↔ [Xm1 , . . . , XmL],
with Xmi = Xmod(mi). Like the 2C system, the
RNS arithmetic is exact as long as the final result
is bounded within the system’s dynamic range M .
Mapping from the RNS back to the integer domain
is defined by the Chinese Remainder Theorem (CRT)
[9, 10]. RNS arithmetic is defined by pair-wise modular
operations:

Z = X ± Y ↔ [∣∣Xm1 ± Ym1

∣∣
m1

, . . . ,
∣∣XmL ± YmL

∣∣
mL

]

Z = X × Y ↔ [∣∣Xm1 × Ym1

∣∣
m1

, . . . ,
∣∣XmL × YmL

∣∣
mL

]

(1)

where |Q|mj denotes Q mod(m j). The individual mod-
ular arithmetic operations are typically performed as
LUT calls to small memories. The RNS differs from
traditional weighted numbering systems in that the
RNS arithmetic is a carry-free and can operate at a
constant speed over a wide range of wordwidths (pre-
cision). It is the ability of the RNS to do arithmetic
within independent small wordlength channels that
makes it particularly attractive for FPL insertion. The

Implementation of RNS-Based Distributed Arithmetic Discrete Wavelet Transform Architectures 173

RNS has been studied in an FPL context by Hamann
and Sprachmann [12] who explored implementing a
simple DSP solution using Xilinx parts. Jullien [13]
combined number theory with FPLs to design a FIR.
Fermat primes were used as the basis elements and a
Xilinx FPGA used to implement index arithmetic ALU.
Performance is strongly influenced by the choice of
basis functions (moduli) that were limited by the size
of the FPL LUT address space, and channel width. A
demonstration of the RNS as an enabling FPL tech-
nology is the communication filter reported in [20,
21] using an Altera FLEX10K part. The digital fil-
ters were designed to accept 8-bit inputs and 10-bit
coefficients, with an internal 24-bit dynamic range,
and ran at 49.3 MHz in 2C and 76.6 MHz in the
RNS. Complexity was comparable to a 2C design.
These preliminary works provide the motivation to
advance this work in a rigorous and comprehensive
manner.

3. Discrete Wavelet Transform

Interest in the wavelet transform [23, 24] has grown
dramatically during the last decade [25–30]. Wavelet
transforms are routinely used in speech, image and
video signal processing, and other applications.
Discrete wavelet transforms (DWT) are defined
over a sequence of embedded closed subspaces,
VJ ⊂ VJ−1⊂ · · · ⊂ V1 ⊂ V0, where V0 = l2(Z) is the
space of square-summable sequences. These sub-
spaces satisfy the upward completeness property,
∪Vj = l2(Z), j ∈ [0, J]. Assume that any element in
Vj can be uniquely expressed as the sum of two ele-
ments from Vj+1 and W j+1, where Vj = Vj+1 ⊕ W j+1.
For orthogonal wavelets, W j+1 is defined as the
orthogonal complement of Vj+1 in Vj . Assuming a
sequence ḡn ∈ V0 exists such that {ḡn−2k}k∈Z is a basis
for V1, a sequence h̄n ∈ V0 can then be found such
that {h̄n−2k}k∈Z is a basis for W1. Thus, V0 can be
decomposed as: V0 = W1 ⊕ W2 ⊕ · · · ⊕ WJ ⊕ VJ by
simply iterating the decomposition rule J times. An
attractive feature of the wavelet series expansion is that
the underlying multiresolution structure leads to an
efficient discrete-time algorithm based on a filter bank
implementation. The octave-band analysis filter bank
computes the inner products with the basis functions
for W1, W2, . . . , WJ , and VJ . The orthogonal projec-
tion of the input signal onto W1, W2, . . . , WJ , and
VJ is computed after convolution with the synthesis

filters. Then, the sequence is decomposed into a coarse
resolution version in VJ with added details in Wi

(i = 1, 2, . . . ,J). Thus a 1-D N th-order DWT decom-
position of a sequence xn is defined by the recurrent
equations:

a(i)
n =

N−1∑
k=0

gka(i−1)
2n−k i = 1, 2, . . . , J

(2)

d (i)
n =

N−1∑
k=0

hka(i−1)
2n−k a(0)

n ≡ xn

where a(i)
n and d (i)

n are level-i approximation and detail
sequences, respectively, and gk and hk (k = 0, 1, . . . ,
N − 1) correspond to the low-pass and high-pass anal-
ysis filter coefficients. On the other hand, the signal xn

can be perfectly recovered through its multiresolution
decomposition {a(J)

n , d (J)
n , d (J−1)

n , . . . , d (1)
n } by iteration

on:

â(i−1)
m =

N/2−1∑
k=0

ḡ2k â(i)
m
2 −k +

N/2−1∑
k=0

h̄2k d̂ (i)
m
2 −k m even

N/2−1∑
k=0

ḡ2k+1â(i)
m−1

2 −k
+

N/2−1∑
k=0

h̄2k+1d̂ (i)
m−1

2 −k
m odd

(3)

where ḡk and h̄k represent low-pass and high-pass syn-
thesis filter coefficients. In order to ensure perfect re-
covery of the input signal, the coefficients of the anal-
ysis and synthesis filter banks are conveniently related
to each other according to the perfect reconstruction
condition [23, 24].

4. 2C-DA Architectures for the DWT

Conventional 2C-DA has been successfully applied to
the implementation of FIR filters and other linear dis-
crete transforms. DA designs replace general multipli-
cation with scaling operations implemented using LUT
calls. DA architectures are bit-serial and are often re-
ported to be faster than MAC-centric designs. In addi-
tion, compared to programmable MAC solutions, DA
designs often have a lower roundoff error budget [31].
The DA advantage is amplified in FPL applications, a
technology possessing an intrinsically weak MAC ca-
pability. A DA FPL design must, however, be mindful

174 Ramı́rez et al.

of the channel barrier problem since FPLs restrict DA
LUTs to reside in an FPL’s logic element (LE). For Al-
tera FLEX10K devices, each LE consists of a 24 × 1
LUT, an output register and dedicated logic for fast
carry and cascade chains. The larger embedded array
blocks (EABs) found in a FLEX10K device consist of
2K-bit memory blocks configurable as 28 × 8, 29 × 4,
210×2 or 211×1. The FLEX10KE family now provides
4K-bit EABs organized as 28 × 16, 29 × 8, 210 × 4 or
211 × 2.

A 2C-DA design assumes that the input to a DSP-
object (e.g., FIR filter) is the Bi -bit word:

a(i−1)
n = −2Bi −1a(i−1)

n,Bi −1 +
Bi −2∑
l=0

2la(i−1)
n,l (4)

where a(i−1)
n,l is the l-th bit of the input sample a(i−1)

n .
For the case where the filters define a 1-D DWT, filter
pairs would be defined by (after Eq. (2)):

a(i)
n = −2Bi −1

N−1∑
k=0

gka(i−1)
2n−k,Bi −1 +

N−1∑
k=0

gk

Bi −2∑
l=0

2la(i−1)
2n−k,l

d (i)
n = −2Bi −1

N−1∑
k=0

hka(i−1)
2n−k,Bi −1 +

N−1∑
k=0

hk

Bi −2∑
l=0

2la(i−1)
2n−k,l

(5)

Figure 1. 2C-DA 1-D DWT architecture.

Define the DA LUT functions, �g(l) and �h(l) to be:

�g(l) =
N−1∑
k=0

gka(i−1)
2n−k,l �h(l) =

N−1∑
k=0

hka(i−1)
2n−k,l (6)

which results in the DA equations:

a(i)
n = −2Bi −1�g(Bi − 1) +

Bi −2∑
l=0

2l�g(l)

(7)

d (i)
n = −2Bi −1�h(Bi − 1) +

Bi −2∑
l=0

2l�h(l)

The computation of the i th-octave-approximations,
a(i)

n , and details, d (i)
n , (i = 1, 2, . . . , J) is carried using

two 2N × W LUTs representing the functions �g(l)
and �h(l), which are addressed by the N -bit vector
{a(i−1)

2n,l , a(i−1)
2n−1,l , . . . , a(i−1)

2n−N+1,l}, W ≤ b + �log2(N)�,
and b represents the filter coefficient precision. Observe
that computing Eq. (7) requires repeated calls to the ta-
bles �g(l) and �h(l), followed by a shift-add (scaled
accumulation). Figure 1 shows the 2C-DA architecture
for the computation of the i th octave filter bank out-
put. The first table look-up is shift subtracted while the
following are added to the accumulator. Note that dec-
imation by 2 is carried out efficiently by considering
two consecutive input samples, a(i−1)

2n−1 and a(i−1)
2n . The

sampling clock (sCLK) is generated by dividing the

Implementation of RNS-Based Distributed Arithmetic Discrete Wavelet Transform Architectures 175

accumulation bit clock (bCLK) by Bi . Two input val-
ues are sampled in each sampling clock (sCLK) cycle.
Finally, registers are left-shifted, since the MSB (most
significant bit) is the first bit processed.

A polyphase filter bank representation can, however,
lead to a reduction in the LUT address space. Defining
the even- and odd-indexed filters to be g0(k) = g2k ,
h0(k) = h2k , g1(k) = g2k+1, and h1(k) = h2k+1 (k = 0,
1, . . . , N/2 − 1), a polyphase DA architecture, for the
i th-octave analysis and synthesis filter bank consists
of four independent DA filters operating on even- and
odd-indexed input samples:

a(i)
n =

N/2−1∑
k=0

g0(k)a(i−1)
2n−2k +

N/2−1∑
k=0

g1(k)a(i−1)
2n−2k−1

(8)

d (i)
n =

N/2−1∑
k=0

h0(k)a(i−1)
2n−2k +

N/2−1∑
k=0

h1(k)a(i−1)
2n−2k−1

Thus, polyphase filters convolve two distinct sample
subsets. The even indexed values of a(i−1) are con-
volved with g0(k) and h0(k) and the odd indexed values
are filtered using g1(k) and h1(k). In this way, the defin-
ing DA relationships are:

�g0 (l) =
N/2−1∑

k=0

g0(k)a(i−1)
2n−2k,l

�g1 (l) =
N/2−1∑

k=0

g1(k)a(i−1)
2n−2k−1,l

(9)

�h0 (l) =
N/2−1∑

k=0

h0(k)a(i−1)
2n−2k,l

�h1 (l) =
N/2−1∑

k=0

h1(k)a(i−1)
2n−2k−1,l

and the filter bank outputs become:

a(i)
n = −2Bi −1�g0 (Bi − 1)

+
Bi −2∑
l=0

2l�g0 (l) − 2Bi −1�g1 (Bi − 1)

â(i−1)
m =

−2Bi −1�e
h̄(Bi − 1) +

Bi −2∑
l=0

2l�e
h̄(l) − 2Bi −1�e

ḡ(Bi − 1) +
Bi −2∑
l=0

2l�e
ḡ(l) m even

−2Bi −1�o
h̄(Bi − 1) +

Bi −2∑
l=0

2l�o
h̄(l) − 2Bi −1�o

ḡ(Bi − 1) +
Bi −2∑
l=0

2l�o
ḡ(l) m odd

(13)

+
Bi −2∑
l=0

2l�g1 (l)

(10)
d (i)

n = −2Bi −1�h0 (Bi − 1)

+
Bi −2∑
l=0

2l�h0 (l) − 2Bi −1�h1 (Bi − 1)

+
Bi −2∑
l=0

2l�h1 (l)

The architecture is shown in Fig. 2 and consists of four
2N/2 ×W ′ LUTs, where W ′ ≤ b′ +�log2(N/2)� and b′

represents the filter bank coefficient precision. Notice
that it is necessary to introduce a delay in the odd-
indexed sequence, and that the two outputs a(i)

n and d (i)
n

are computed by adding the low-pass and high-pass
polyphase filter outputs respectively.

The 1-D IDWT (inverse DWT) can be also com-
puted through the DA scheme in a manner motivated in
the 2C-DA design narrative. By representing the inputs
to the i th-octave reconstruction filter bank, for B̄i -bit
words, as:

â(i)
n = −2B̄i −1â(i)

n,B̄i −1 +
B̄i −2∑
l=0

2l â(i)
n,l

(11)

d̂ (i)
n = −2B̄i −1d̂ (i)

n,B̄i −1 +
B̄i −2∑
l=0

2l d̂ (i)
n,l

The IDWT LUTs are defined by:

�e
h̄(l) =

N/2−1∑
k=0

h̄2k d̂ (i)
m
2 −k,l �o

h̄(l) =
N/2−1∑

k=0

h̄2k+1d̂ (i)
m−1

2 −k,l

�e
ḡ(l) =

N/2−1∑
k=0

ḡ2k â(i)
m
2 −k,l �o

ḡ(l) =
N/2−1∑

k=0

ḡ2k+1â(i)
m−1

2 −k,l

(12)

and the computation of the DA IDWT is defined to be:

176 Ramı́rez et al.

Figure 2. Polyphase 2C-DA 1-D DWT architecture.

The 2C-DA architecture is shown in Fig. 3 in the con-
text of the i th-octave synthesis filter. The low- and high-
pass filter outputs are computed according to the DA
paradigm that computes the even and odd outputs si-
multaneously. Two consecutive output samples, â(i−1)

m

and â(i−1)
m+1 , (m even) are computed concurrently over

the set of samples {â(i)
m/2, â(i)

m/2−1, . . . , â(i)
m/2−N/2+1, d̂ (i)

m/2,
d̂ (i)

m/2−1, . . . , d̂ (i)
m/2−N/2+1} by accumulating the outputs

of four 2N/2 × W̄ LUTs, where W̄ ≤ b̄ +�log2(N/2)�,
where b̄ represents the filter bank coefficient preci-
sion. Implementation data for these 2C-DA architec-
tures will be given in Section 6.

5. RNS-DA Architectures for the DWT

In concept, the RNS represents a potentially efficient
means of implementing a DA-based FPL DSP solution

[11]. Input sequences are encoded and manipulated
concurrently within small wordlength channels. An
RNS system was defined in terms of a moduli set
P = {m1, m2, . . . , mL} as developed in Section 2.
Since typically mi ≤ 28, the solution can be defined
to reside within 8-bit channels. A comparable proce-
dure to that shown in Eq. (7) for the 2C-DA mech-
anization will be developed for the RNS-DA. Thus,
for every channel, the current result must be mul-
tiplied by 2 prior to accumulating with the output
of a LUT. This would require a specific LUT for 2
mod mj multiplication, which would add unwanted
complexity to the recursive path. However, using a
scaled modular accumulator computing |y(n)|mj =
|2y(n − 1) + x(n)|mj , an RNS-DA solution can be re-
alized, leading to an efficient implementation of in-
ner product based DSP algorithms. This accumula-
tor is designed according to the following selection

Implementation of RNS-Based Distributed Arithmetic Discrete Wavelet Transform Architectures 177

Figure 3. 2C-DA 1-D IDWT architecture.

rules:

|y(n)|m j =

2|y(n − 1)|m j + |x(n)|mj if 2|y(n − 1)|mj + |x(n)|mj < mj

2|y(n − 1)|mj + |x(n)|mj − mj if mj ≤ 2|y(n − 1)|mj + |x(n)|mj < 2mj

2|y(n − 1)|mj + |x(n)|mj − 2mj if 2mj ≤ 2|y(n − 1)|mj + |x(n)|mj < 3mj

(14)

The design of a modulo mj scaling accumulator, for
RNS-DA applications, was presented in [11]. An im-
proved architecture can be innovated by using CSAs
(carry save adders) to realize the 2nd and 3rd terms
in Eq. (14), as shown in Fig. 4. The improved design
shortens the carry propagation chain, thus improving
the performance of an RNS-DA based system. The
new accumulator also uses one CPA (carry propagate
adder) to realize the term 2|y(n − 1)|mj +|x(n)|mj , with

two CSAs used to compute 2|y(n − 1)|mj + |x(n)|mj −
mj and 2|y(n − 1)|mj + |x(n)|mj − 2mj respectively.
These terms are computed concurrently and, as a result,
have only one carry propagation stage in the critical
path. The final result is selected on the basis of the
carries generated in the summation stages as reported
in Table 1.

In Table 2, a comparison is made between the im-
proved accumulator and that was originally reported in

178 Ramı́rez et al.

Figure 4. Improved design of the RNS-DA accumulator.

[11], in terms of LE requirements, and speed, for 6-,
7- and 8-bit modulus accumulators. CPAs are synthe-
sized using fast carry chains while each 3-input logic
function (required by a CSA) is mapped to a single
LE. Since only one CPA stage appears in the signal
path, the advantage in performance increases with the
modulus wordwidth. Thus, compared to the previous
modulo accumulator, the throughput improvement for
the new CSA-based accumulator, for 6-, 7- and 8-bit
moduli, is 3.13%, 4.02% and 5.74% for—3 speed grade
devices, and 1.68%, 2.75% and 4.10% for—4 grade
devices. Additional benefits in area and speed are ex-
pected when the proposed accumulator is used for a
standard cell ASIC design. The reason for that is that

Table 1. Scaled accumulator decision logic table.

C0 c1 c2 c3 Result

0 0 0 0 s1

0 0 0 1 s1

0 0 1 1 s2

1 0 1 1 s2

1 0 1 0 s3

1 0 0 0 s3

0 1 0 0 s3

Any other combination –

Table 2. Comparison between the proposed modulo mj accumula-
tor and the accumulator in [11].

Modified modulo CSA-based
accumulator in [11] modulo accumulator

Throughput (MHz)
Throughput (MHz) improve (%)

LEs −3a −4a LEs −3a −4a

6-bit modulus 37 50.50 40.48 55 52.08 41.15

(3.13%) (1.68%)

7-bit modulus 43 48.70 39.24 61 50.66 40.32

(4.02%) (2.75%)

8-bit modulus 49 47.18 38.05 74 49.89 39.61

(5.74%) (4.10%)

aDevice speed grade.

FPL’s carry chains used in [11] are almost as fast as
the CSA implementation using 24 × 1 SRAM logic
elements.

The RNS-DA mechanization will now be derived
for wavelet filter banks. A modulo mj path of the direct
RNS-DA implementation of the i th-octave filter bank
is defined in terms of an nj -bit unsigned number:

∣∣a(i−1)
n

∣∣
mj

=
nj −1∑
l=0

2l
∣∣a(i−1)

n,l

∣∣
mj

(15)

Implementation of RNS-Based Distributed Arithmetic Discrete Wavelet Transform Architectures 179

Figure 5. RNS-DA 1-D DWT architecture.

where nj = �log2(mj)�, and |a(i−1)
n,l |mj is the lth bit of

residue |a(i−1)
n |mj . Substituting Eq. (15) into Eq. (2),

interpreted in a modulo mj sense, the i th-octave-
approximation and detail sequences can be written as:

∣∣a(i)
n

∣∣
mj

=
∣∣∣∣∣

N−1∑
k=0

gk

nj −1∑
l=0

2l
∣∣a(i−1)

2n−k,l

∣∣
mj

∣∣∣∣∣
mj

i = 1, 2, . . . , J
(16)

∣∣d (i)
n

∣∣
mj

=
∣∣∣∣∣

N−1∑
k=0

hk

nj −1∑
l=0

2l
∣∣a(i−1)

2n−k,l

∣∣
mj

∣∣∣∣∣
mj∣∣a(0)

n

∣∣
mj

≡ ∣∣xn

∣∣
mj

Finally, by defining the DA functions:

� j
g(l) =

∣∣∣∣∣
N−1∑
k=0

gka(i−1)
2n−k,l

∣∣∣∣∣
mj

�
j
h(l) =

∣∣∣∣∣
N−1∑
k=0

hka(i−1)
2n−k,l

∣∣∣∣∣
mj

(17)

and interchanging the order of summations in Eq. (16),
the RNS encoded i th-octave filter bank outputs are
computed to be:

∣∣a(i)
n

∣∣
mj

=
∣∣∣∣∣
nj −1∑
l=0

2l� j
g(l)

∣∣∣∣∣
mj

∣∣d (i)
n

∣∣
mj

=
∣∣∣∣∣
nj −1∑
l=0

2l�
j
h(l)

∣∣∣∣∣
mj

(18)

Figure 5 summarizes the modulo mj RNS-DA ar-
chitecture for the i th-octave analysis filter bank. N
registers are used to left shift the input samples.
The two inputs are sampled at a rate sCLK, the
two LUTs storing �

j
g and �

j
h are accessed in each

bit clock (bCLK) cycle to generate the terms of
the relationship given in Eq. (18). The clock sCLK
is easily generated dividing bCLK by the modu-
lus width, nj . Finally, two modified modulo mj ac-
cumulators compute recursively and in parallel the
i th-octave-approximation, |a(i)

n |mj , and detail, |d (i)
n |mj

sequences.
As in Eqs. (8) and (9) for a 2C-DA design, the

polyphase filter bank [24] implementation can be con-
sidered in an attempt to reducing the DA LUT size.
A polyphase RNS-DA architecture, suitable for high-
order filter banks, is shown in Fig. 6. The production
of |a(i)

n |mj and |d (i)
n |mj is computed as a polyphase filter

bank, represented by:

∣∣a(i)
n

∣∣
mj

=
∣∣∣∣∣∣

∣∣∣∣∣
nj −1∑
l=0

2l� j
g0

(l)

∣∣∣∣∣
mj

+
∣∣∣∣∣
nj −1∑
l=0

2l� j
g1

(l)

∣∣∣∣∣
mj

∣∣∣∣∣∣
mj

∣∣d (i)
n

∣∣
mj

=
∣∣∣∣∣∣

∣∣∣∣∣
nj −1∑
l=0

2l�
j
h0

(l)

∣∣∣∣∣
mj

+
∣∣∣∣∣
nj −1∑
l=0

2l�
j
h1

(l)

∣∣∣∣∣
mj

∣∣∣∣∣∣
mj

(19)

180 Ramı́rez et al.

Figure 6. Polyphase RNS-DA 1-D DWT architecture.

where the contents of the four 2N/2×nj LUTs are given
by:

� j
g0

(l) =
∣∣∣∣∣

N/2−1∑
k=0

g0(k)a(i−1)
2n−2k,l

∣∣∣∣∣
mj

� j
g1

(l) =
∣∣∣∣∣

N/2−1∑
k=0

g1(k)a(i−1)
2n−2k−1,l

∣∣∣∣∣
mj

(20)

�
j
h0

(l) =
∣∣∣∣∣

N/2−1∑
k=0

h0(k)a(i−1)
2n−2k,l

∣∣∣∣∣
mj

�
j
h1

(l) =
∣∣∣∣∣

N/2−1∑
k=0

h1(k)a(i−1)
2n−2k−1,l

∣∣∣∣∣
mj

In this way, four 2N/2 × nj are necessary to com-
pute Eq. (19) instead of two 2N × nj LUTs as

in the previous approach. The four LUT outcomes
read in each bCLK cycle are processed by means
of four aforementioned modified modulo mj accu-
mulator, and finally pair-wise modulo added [32] to
obtain the final outputs. Detailed information about
the implementation of modulo adders using FPL
technology can be found in [21]. This architec-
ture enables a reduction in LUT address space re-
quirements and is suitable for high-order wavelet
filters.

An RNS-DA architecture for the i th-octave synthesis
filter bank is derived by representing the inputs as nj -bit
unsigned words:

∣∣â(i)
n

∣∣
mj

=
nj −1∑
l=0

2l
∣∣â(i)

n,l

∣∣
mj

∣∣d̂ (i)
n

∣∣
mj

=
nj −1∑
l=0

2l
∣∣d̂ (i)

n,l

∣∣
mj

(21)

Implementation of RNS-Based Distributed Arithmetic Discrete Wavelet Transform Architectures 181

Figure 7. RNS-DA 1-D IDWT architecture.

By interchanging the order of summations, the octave-i
reconstruction filter bank is computed as:
∣∣â(i−1)

m

∣∣
mj

=

∣∣∣∣∣∣

∣∣∣∣∣
nj −1∑
l=0

2l�
j,e
h̄ (l)

∣∣∣∣∣
mj

+
∣∣∣∣∣
nj −1∑
l=0

2l�
j,e
ḡ (l)

∣∣∣∣∣
mj

∣∣∣∣∣∣
mj

m even∣∣∣∣∣∣

∣∣∣∣∣
nj −1∑
l=0

2l�
j,o
h̄ (l)

∣∣∣∣∣
mj

+
∣∣∣∣∣
nj −1∑
l=0

2l�
j,o
ḡ (l)

∣∣∣∣∣
mj

∣∣∣∣∣∣
mj

m odd

(22)

where:

�
j,e
h̄ (l) =

∣∣∣∣∣
N/2−1∑

k=0

h̄2k d̂ (i)
m
2 −k,l

∣∣∣∣∣
mj

�
j,o
h̄ (l) =

∣∣∣∣∣
N/2−1∑

k=0

h̄2k+1d̂ (i)
m−1

2 −k,l

∣∣∣∣∣
mj

(23)

�
j,e
ḡ (l) =

∣∣∣∣∣
N/2−1∑

k=0

ḡ2k â(i)
m
2 −k,l

∣∣∣∣∣
mj

�
j,o
ḡ (l) =

∣∣∣∣∣
N/2−1∑

k=0

ḡ2k+1â(i)
m−1

2 −k,l

∣∣∣∣∣
mj

The resulting modulo mj RNS-DA architecture for the
i th-octave synthesis filter bank is shown in Fig. 7.
The inputs |â(i)

n |mj and |d̂ (i)
n |mj are sampled at a rate

sCLK. Two buffers, consisting of N /2 registers, are
used to shift the input sequence and four LUTs store
the functions �

j,e
ḡ , �

j,o
ḡ , �

j,e
h̄ and �

j,o
h̄ . The output is

computed concurrently as the summation of the low-
pass and high-pass filters over even and odd cycles.

182 Ramı́rez et al.

In this manner, the values |â(i−1)
m,even|mj and |â(i−1)

m,odd|mj are
computed using two modulo mj modified accumulators
clocked by the bit clock rate bCLK, and two modulo mj

adders, clocked at sCLK. Note that sCLK is generated
by dividing bCLK by nj .

6. Comparison of 2C-DA and RNS-DA DWT:
FPL Implementation

The RNS-DA scheme takes advantage of short
wordlength computations to overcome the channel bar-
rier problem. Processing within an RNS channel is
accomplished in nj accumulation cycles, where nj is
small. RNS-DA designs can exceed the performance
of a 2C-DA system that requires more accumulation
cycles to implement a typical filter. The sampling fre-
quency of the RNS-DA scheme, f sCLK

RNS-DA, is related to
that of the 2C-DA rate f sCLK

2C-DA, by:

f sCLK
RNS-DA = B

nj

f bCLK
RNS-DA

f bCLK
2C-DA

f sCLK
2C-DA (24)

where f bCLK
RNS-DA and f bCLK

2C-DA are the accumulation clock
frequency of RNS-DA and 2C-DA schemes, respec-
tively. In this way, the RNS-DA improvements are pro-
portional to the wordlength ratio (i.e., B:nj), and the
bit-clock ratio (i.e., f bCLK

RNS-DA : f bCLK
2C-DA).

Implementation of a DWT was considered us-
ing Altera FLEX10K devices. Different input, coef-
ficient, and output precisions were considered in or-
der to assess the advantage of the schemes proposed
on the overall sampling frequency. The use of 5-
bit wide RNS channels was found to be an attrac-
tive choice since the sampling frequency is divided
by the modulus width. The dynamic range is cov-
ered with 6-bit moduli, say {32, 31, 29, 27, 25}
and {32, 31, 29, 27, 25, 23}, cover a range from
23 to 29-bits respectively. Table 3 audits the num-
ber of LEs and EABs required for the analysis and
synthesis filter bank, as well as the throughput of a
2C-DA and 5- and 6-bit moduli RNS-DA schemes.
These tables include results for a modulo 32 and
64 DA channel, as well as for generic 5- and 6-
bit RNS channels. The eight-tap filters, considered
in Table 3, were compared for RNS-DA and 2C-
DA DWT. Although non-polyphase RNS-DA archi-
tectures require 28 × 6 LUTs, instead of 24 × 6, these
structures are preferred over polyphase architectures
since less EABs are needed. However, polyphase ar-
chitectures are ideal for higher order filters to enable

fitting DA LUTs on embedded FPL device resources.
On the other hand, for the special case of the 8-tap
theme polyphase filter bank, no EABs are required
if DA LUTs are mapped to 24 × 1 LEs as shown in
Table 3.

The maximum bandwidth provided by DWT fil-
terbanks based on 2C-DA and RNS-DA was com-
pared for different precisions. Figure 8 yields the
maximum sampling rate of a DWT filterbank us-
ing 2C-DA and RNS-DA (for 5- and 6-bit mod-
ulus sets) as a function of the input precision.
Notice that, for a 5-bit RNS-DA solution, the sam-
pling frequency is always higher than for a 2C-
DA DWT filterbank. The overall throughput of
2C-DA filter banks decreases as the input precision
increases. However, this decrease in the overall sam-
pling rate does not occur in RNS-DA scheme if fixed
bit-width modulus are used to handle the increas-
ing dynamic range. Thus, RNS-DA provided an in-
crease in the overall sampling rate, up to 136.63%
and 156.27%, for –3 and –4 grade devices, re-
spectively, for a 14-bit input design. As a result,
RNS-DA is seen to represent an efficient tool for
providing a sustained throughput when the precision is
increased.

Table 3 provides results obtained for the syn-
thesis filter bank too. Different implementations of
the system in Fig. 7 were considered. In this way,
mapping the DA LUTs on LEs was found to be
more efficient than using EABs in terms of hard-
ware requirements. When compared to an analysis
filter bank, these architectures require less memory
bits since 4-bit LUTs, instead of 8-bit address mem-
ories, are required. In order to take advantage of
the built-in memory blocks and reduce the num-
ber of accumulators from 4 to 2, a new RNS-
DA architecture that uses two 2N × nj LUTs, was
derived. The enhancement can be carried out by
considering the computation of an even filter in-
volving the even coefficients of the low-pass and
high-pass, and an odd filter involving the odd
coefficients of the low-pass and high-pass filters.
Such filters are two-input filters and are defined as
follows:

∣∣â(i−1)
m

∣∣
mj

=

∣∣∣∣∣
nj −1∑
l=0

2l�
j,e
ḡ,h̄(l)

∣∣∣∣∣
mj

m even

∣∣∣∣∣
nj −1∑
l=0

2l�
j,o
ḡ,h̄(l)

∣∣∣∣∣
mj

m odd

(25)

Implementation of RNS-Based Distributed Arithmetic Discrete Wavelet Transform Architectures 183

Table 3. Hardware requirements and performance for 5- and 6-bit RNS-DA DWT channels and for different precision 2C-DA
architectures.

fbCLK (MHz) fsCLK(MHz) Throughput
8-tap DWT filter bank Number of EABs Speed grade Speed grade improvement of
implementation Number of LEs (memory bits) −3 and −4 −3 and −4 RNS-DA

6-bit modulus RNS-DA channel 189a 2 (3072)a 34.72 (−4) 5.59 (−4)

373b 4 (384)b 43.47 (−3)

397c 0c

Modulo 64 RNS-DA channel 100a 2 (3072)a 65.35 (−4) 7.25 (−3)

168b 4 (384)b 81.96 (−3)

192c 0c

5-bit modulus RNS-DA channel 159a 2 (2560)a 39.84 (−4) 7.97 (−4)

312b 4 (320)b 49.12 (−3)

332c 0c

Modulo 32 RNS-DA channel 85a 2 (2560)a 74.73 (−4) 9.82 (−3)

140b 4 (320)b 91.12 (−3)

160c 0c

2C-DA
8-bit input 220d 4 (6656)d 50.00 (−4) 6.25 (−4) 27.52% (−4)

10-bit coeffs. 434e 6 (768)e 66.66 (−3) 8.33 (−3) 17.89% (−3)

21-bit output 482f 0f

10-bit input 248d 4 (6656)d 45.87 (−4) 4.59 (−4) 73.64% (−4)

10-bit coeffs. 482e 6 (768)e 61.72 (−3) 6.17 (−3) 59.16% (−3)

23-bit output 530f 0f

12-bit input 292d 4 (7680)d 46.51 (−4) 3.88 (−4) 105.41% (−4)

12-bit coeffs. 574e 8 (896)e 63.69 (−3) 5.31 (−3) 84.93% (−3)

27-bit output 630f 0f

14-bit input 320d 4 (7680)d 43.47 (−4) 3.11 (−4) 156.27% (−4)

12-bit coeffs. 630e 8 (1024)e 58.13 (−3) 4.15 (−3) 136.63% (−3)

29-bit output 694f 0f

aArchitectures RNS-DA shown in Figs. 5 and 9.
bArchitectures RNS-DA shown in Figs. 6 and 7.
cArchitectures RNS-DA shown in Figs. 6 and 7 synthesized without using EABs.
dArchitectures 2C-DA shown in Fig. 1 or the 2C design of Fig. 9.
eArchitectures 2C-DA shown in Figs. 2 and 3.
fArchitectures 2C-DA shown in Figs. 2 and 3 synthesized without using EABs.

where �
j,e
ḡ,h̄(l) and �

j,o
ḡ,h̄(l) are defined as:

�
j,e
ḡ,h̄(l) =

∣∣∣∣∣
N/2−1∑

k=0

[
ḡ2k â(i−1)

m−1
2 −k,l

+ h̄2k d̂ (i−1)
m−1

2 −k,l

]∣∣∣∣∣
mj

(26)

�
j,o
ḡ,h̄(l) =

∣∣∣∣∣
N/2−1∑

k=0

[
h̄2k+1d̂ (i−1)

m
2 −k,l + ḡ2k+1â(i−1)

m
2 −k,l

]∣∣∣∣∣
mj

which can be stored in two 2N × nj LUTs. Both are
addressed by the N -bit vector involving N /2 input

samples of each input sequence {â(i)
m/2, â(i)

m/2−1, . . . ,

â(i)
m/2−N/2+1, d̂ (i)

m/2, d̂ (i)
m/2−1, . . . , d̂ (i)

m/2−N/2+1} (m even).
In addition, two consecutive samples of the output se-
quence are computed concurrently. Figure 9 shows this
new RNS-DA architecture for the i th-octave recon-
struction filter bank. Note that this architecture requires
only two scaled modulo mj accumulators and half the
EAB resources of the previous approach, as shown in
Table 3. Since only two CSA-based modulo accumu-
lators are required for the new architecture, the total
number of LEs needed is reduced by almost 50%.

184 Ramı́rez et al.

Figure 8. Overall 1-D DWT throughput of different input precision configurations.

Figure 9. Architecture with only two scaled accumulator for the octave-i synthesis filter bank.

Implementation of RNS-Based Distributed Arithmetic Discrete Wavelet Transform Architectures 185

7. Parallel RNS-DA DWT Architectures

The original DA paradigm, disclosed by Peled and
Liu [5], considered a number of versions of the
basic architecture. The DA architecture presented in
Eq. (10), requires a minimum number of LUTs. At the
other extreme, Peled and Lui proposed a multi-LUT
architecture designed for speed. Maximum throughput
for a 2C-DA would occur if, in Eq. (10), every one
of the Bi -bit locations had a dedicated LUT. Such
a design contains Bi copies of the four 2N/2 × W ′

LUT groups shown in Fig. 2. The RNS-DA, however,
provides a different opportunity. The computation
of Eq. (18) can be implemented with a multi-LUT
architecture, specifically in terms of 2nj 2N ×nj LUTs
implementing the functions |2l�

j
g|mj and |2l�

j
h |mj for

l = 0, 1, . . . , nj − 1. The address of the lth LUT con-
sists of the l-th bit of N buffered signal samples. The
output sequences, |a(i)

n |mj and |d (i)
n |mj , are computed

by adding nj LUT outcomes per cycle by means of the
pipelined modulo mj adder [21] tree shown in Fig. 10.
The computation of the i th-octave reconstruction
(synthesis) filter bank can also be carried out by using
the parallel polyphase RNS-DA design shown in
Fig. 11. This is achieved by using 4nj 2N/2 × nj LUTs
to implements the function |2l�

j,e
ḡ |mj , |2l�

j,o
ḡ |mj ,

|2l�
j,e
h̄ |mj and |2l�

j,e
h̄ |mj , for l = 0, 1, . . . , nj − 1. The

lth LUT address consists of the lth bits of N /2 buffered
samples of |â(i)

n |mj (|d̂ (i)
n |mj). Finally, the sequence

|â(i−1)
m |mj can be computed by adding the LUT words

by means of a modulo mj adder tree as shown in

Figure 10. Parallel RNS-DA 1-D DWT architecture.

Table 4. Hardware requirements and throughput for 6-bit modulus
8-tap parallel RNS-DA architectures over Altera FPL devices.

FLEX10K FLEX10KE
Parallel RNS-DA Speed grade Speed grade
architecture −3 and −4 −1 and −3

Number of LEs 240 240

Number of EABs 2 × 6 6
(memory bits) (2 × 6 × 28× 6) (6 × 28× 12)

Throughput for several speed 84.74 (−3) 135.13 (−1)
grade devices (MHz) 68.96 (−4) 86.20 (−3)

Fig. 11. Note that in these instances, only a clock rate
is required. Both the computation of the 1-D DWT
and 1-D IDWT, using the fast parallel RNS-DA de-
sign methodology, leads to a significant increase in the
number of LUTs and adders. Table 4 summarizes the
parallel architecture in the context of an 8-tap analy-
sis filter bank. Table 5 shows hardware requirements
of recursive RNS-DA and parallel RNS-DA architec-
tures for the 1-D DWT and its inverse when N -tap
filters are computed by means of K parallel �N/K �-
tap sub-filters. For instance, a 16-tap filter bank for
the 1-D DWT would require two 216 × nj LUTs us-
ing the normal RNS-DA design methodology or, in
polyphase form, using small 28 × nj LUTs by means
of 8-tap sub-filters. Thus, the proposed strategy effi-
ciently reduces the LUT address space of these sys-
tems by considering multiple RNS-DA units working
in parallel.

186 Ramı́rez et al.

Figure 11. Parallel RNS-DA 1-D IDWT architecture.

8. Binary-to-RNS and RNS-to-Binary
Conversion

A historical barrier to the use of the RNS at the system-
level has been the overhead penalty associated with
binary-to-RNS and RNS-to-binary conversion. Binary-
to-RNS conversion can be carried out efficiently on
FPL devices by decomposing the 2C B-bit word, say
x , into a weighted sum of smaller words x̄i (e.g., 4-bit

Table 5. Hardware requirements of recursive RNS-DA and parallel RNS-DA architectures for the 1-D DWT and its inverse when N -tap filters
are computed by means of K DA subfilters.

i th -octave analysis filter bank i th-octave synthesis filter bank

LUTs LUT size mod mj adders mod mj accs. LUTs LUT size mod mj adders mod mj accs.

RNS-DA based 2K 2�N/K � × nj 2(K − 1) 2K a 4K 2�N/2K � × nj 2 + 4(K − 1) 4K a

Parallel RNS-DA 2Knj 2�N/K � × nj 2K (nj − 1) – 4Knj 2�N/2K � × nj 4K (nj − 1) –
architecture +2(K − 1) +4(K − 1) + 2

aModified modulo mj accumulators.

words). Equation (27) exemplifies the case of a 4-bit
decomposition, namely:

|x |mj =
∣∣∣∣∣−2B−1xB−1 +

B−2∑
l=0

2l xl

∣∣∣∣∣
mj

=
∣∣∣∣∣−2B−1xB−1 +

p−1∑
i=0

x̄i 2
4i

∣∣∣∣∣
mj

(27)

Implementation of RNS-Based Distributed Arithmetic Discrete Wavelet Transform Architectures 187

Table 6. FPL resource requirements for the binary-to-RNS and RNS-to-binary converters.

2C-to-RNS RNS-to-2C

Number of Number of EABs Number of Number of EABs
Modulus set LEs (memory bits) LEs (memory bits)

8-bit input {64, 63, 51, 59} 81 0 48 8 (8192)

10-bit coeffs. {32, 31, 29, 27, 25} 92 0 720 0

21-bit output

10-bit input {64, 63, 51, 59} 153 0 48 8 (8192)

10-bit coeffs. {32, 31, 29, 27, 25, 23} 184 0 812 0

23-bit output

12-bit input {64, 63, 51, 59, 55} 208 0 96 10 (10240)

12-bit coeffs. {32, 31, 29, 27, 25, 23} 200 0 812 0

27-bit output

14-bit input {64, 63, 51, 59, 55} 284 0 96 10 (10240)

12-bit coeffs. {32, 31, 29, 27, 25, 23} 244 0 812 0

29-bit output

requires only 24 × nj LUTs. Each can be efficiently
mapped to nj LEs, and modulo mj adders as required.
RNS-to-binary conversion implies the use of a CRT
(Chinese Remainder Theorem)-based converter. The
use of such a CRT-based converter is adequate for re-
cursive RNS-DA DWT applications, since they do not
demand high output conversion data rates. However,
CRT conversion can often be a barrier in certain ap-
plications. The auto-scaling RNS-to-binary converter
(ε-CRT) proposed by Griffin et al. [33] can overcome
these drawbacks by using a few LUTs and binary (mod-
ulo 2n) adder. For a scaled n-bit binary output, and a
nj -bit modulus set, this converter needs one 2nj × n
LUT for each modulus of the RNS and a n-bit adder
tree. This solution is more appropriate for most appli-
cations demanding high data rates [22], including the
presented parallel RNS-DA DWT architecture. Imple-
mentation data, using Altera FLEX10K devices, of the
2C-to-RNS and RNS-to-2C converters are provided in
Table 6 for 5- and 6-bit modulus sets. The design for the
2C-to-RNS converter was derived from Eq. (27) while
the ε-CRT algorithm with a 16-bit output was used for
the RNS-to-2C converter. The results showed that using
a 5-bit modulus set is not only optimum in the sense that
it requires less clock cycles to compute the recursive
RNS-DA equations, but it yields excellent performance
improvements and enables the implementation of the
converters with no need of using FPL embedded mem-
ory blocks. On the other hand, the operating frequency
of both converters was found to be even higher than

the sCLK frequency, so the high throughput of the pre-
sented RNS-DA architectures was not degraded when
converters were inserted in the system.

9. Conclusions

This paper considers the design and implementation
of digital filters using an RNS-DA paradigm and FPL
technology. To achieve a high level of performance a
new CSA-based scaled modulo accumulator was de-
veloped. With this, and other innovations, the RNS-DA
architecture was shown to be well suited for integrat-
ing DSP objects with FPL devices. To test the voracity
of the proposed methodology, a DWT filter bank was
used as a standard. The exhaustive comparison of a 2C-
DA and RNS-DA was carried out using commercially
available FPL technology with the RNS-DA shown
to be advantageous, especially for high-precision ap-
plications. A DWT filterbank having a 14-bit input,
designed by means of the reported RNS-DA method-
ology, achieved a performance improvement over the
equivalent 2C system of up to 156.27%, and with the
conversion stage not degrading the throughput of the
overall system.

Acknowledgments

J. Ramı́rez, A. Garcı́a, and A. Lloris were sup-
ported by the Comisión Interministerial de Ciencia y

188 Ramı́rez et al.

Tecnologı́a (Spain) under project PB98-1354. CAD
tools and supporting material were provided by Al-
tera Corp., San Jose CA, under the Altera University
Program. We would like to thank the anonymous re-
viewers for their valuable comments and suggestions
that contributed to enhance the material presented in
this paper.

References

1. D. Lautzenheiser, “Rapid Time to Production and ASICs Aren’t
Mutually Exclusive,” ISD Magazine, Nov. 1998.

2. C. Dick, “FPGAs: The High-End Alternative for DSP Applica-
tions,” DSP Engineering, Spring 2000.

3. F. Taylor and J. Mellot, Hands-On Digital Signal Processing,
New York: McGraw Hill, 1998.

4. F. Taylor, “An Analysis of the Distributed Arithmetic Digital
Filter,” IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing, vol. 34, no. 5, 1986, pp. 1165–1170.

5. S.A. White, “Applications of Distributed Arithmetic to Digital
Signal Processing: A Tutorial Review,” IEEE Acoustics, Speech
and Signal Processing Magazine, 1989, pp. 4–19.

6. A. Peled and B. Liu, “A New Hardware Realization of Dig-
ital Filters,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. ASSP-22, no. 6, 1974, pp. 456–
462.

7. Altera Corp., Altera Digital Library, June 2000.
8. Xilinx Inc., The Programmable Logic Data Book, 1999.
9. M. Soderstrand, W. Jenkins, G.A. Jullien, and F.J. Taylor,

Residue Number System Arithmetic: Modern Applications in
Digital Signal Processing, IEEE Press, 1986.

10. N.S. Szabo and R.I. Tanaka, Residue Arithmetic and its Ap-
plications to Computer Technology, New York: McGraw-Hill,
1967.

11. A. Garcı́a, U. Meyer-Bäse, A. Lloris, and F. Taylor, “RNS Im-
plementation of FIR Filters Based on Distributed Arithmetic
Using Field-Programmable Logic,” in Proc. of the 1999 IEEE
International Symposium on Circuits and Systems, 1999, vol. 1,
pp. 486–489.

12. V. Hamann and M. Sprachmann, “Fast Residual Arithmetic with
FPGAs,” in Proc. of the Workshop on Design Methodologies for
Microelectronics, Slovakia, Sept. 1995.

13. H. Safiri, H. Ahamadi, G. Jullien, and V. Dimitrov, “Design and
FPGA Implementation of Systolic FIR Filters Using the Fermat
ALU,” in Proc. of the Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, 1996.

14. E. Di Claudio, F. Piazza, and G. Orlandi, “Fast Combinational
RNS Processors for DSP Applications,” IEEE Transactions on
Computers, 1995, pp. 624–633.

15. L. Maltar, F.M.G. Franca, V.C. Alves, and C.L. Amorim, “Im-
plementation of RNS Addition and RNS Multiplication into
FPGAs,” in Proc. of the 6th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, April 1998,
pp. 331–332.

16. U. Meyer-Bäse, J. Buros, W. Trautmann, and F. Taylor, “Fast
Implementation of Orthogonal Wavelet Filterbanks Using Field-
Programmable Logic,” in Proc. of the 1999 IEEE International

Conference on Acoustics, Speech and Signal Processing, March
1999, vol. 4, pp. 2119–2122.

17. J. Ramı́rez, A. Garcı́a, P.G. Fernández, L. Parrilla, and A.
Lloris, “RNS-FPL Merged Architectures for the Orthogonal
DWT,” Electronics Letters, vol. 36, no. 14, 2000, pp. 1198–
1199.

18. J. Ramı́rez, A. Garcı́a, P.G. Fernández, L. Parrilla, and A.
Lloris, “Analysis of RNS-FPL Synergy for High Throughput
DSP Applications: Discrete Wavelet Transform,” in Field Pro-
grammable Logic: The Roadmap to Reconfigurable Comput-
ing, R.W. Hartenstein and H. Gruenbacher (Eds), LNCS Series,
Berlin: Springer Verlag, 2000, pp. 342–351.

19. J. Ramı́rez, A. Garcı́a, P.G. Fernández, and A. Lloris, “An Effi-
cient RNS Architecture for the Computation of Discrete Wavelet
Transforms on Programmable Devices,” in Proc. of the X Eu-
ropean Signal Processing Conference, Sept. 2000, pp. 255–
258.

20. U. Meyer-Bäse, A. Garcı́a, and F. Taylor, “Implementation of a
Communications Channelizer Using FPGAs and RNS Arith-
metic,” Journal of VLSI Signal Processing, vol. 28, 2001,
pp. 115–118.

21. A. Garcı́a, U. Meyer-Bäse, and F.J. Taylor, “Pipelined
Hogenauer CIC Filters Using Field-Programmable Logic and
Residue Number System,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, Seattle, WA, May
1998, vol. 5, pp. 3085–3088.

22. J. Ramı́rez, A. Garcı́a, P.G. Fernández, L. Parrilla, and A. Lloris,
“A New Architecture to Compute the Discrete Cosine Transform
Using the Quadratic Residue Number System,” in Proc. of the
2000 International Symposium on Circuits and Systems, May
2000, vol. 5, pp. 321–324.

23. G. Strang and T. Nguyen, Wavelets and Filter Banks. Wellesly-
Cambridge Press, 1997.

24. M. Vetterli and J. Kovacevic, Wavelets and Subband Coding.
Englewood Cliffs, NJ: Prentice Hall, 1995.

25. C. Chakrabarti and M. Vishwanath, “Efficient Realizations of
the Discrete and Continuous Wavelet Transform: From Single
Chip Implementations to Mappings on SIMD Array Comput-
ers,” IEEE Transactions on Signal Processing, vol. 43, 1995,
pp. 759–771.

26. F. Marino, “A “Double-Face” Bit-Serial Architecture for the 1-
D Discrete Wavelet Transform,” IEEE Transactions on Circuits
and Systems II, vol. 47, no. 1, 2000, pp. 65–71.

27. J. Fridman and E.S. Manolakos, “Distributed Memory and
Control VLSI Architectures for the 1-D Discrete Wavelet
Transform,” VLSI Signal Processing, vol. VII, 1994, pp. 388–
397.

28. T.C. Denk and K.K. Parhi, “VLSI Architectures for Lattice
Structure Based Orthogonal Discrete Wavelet Transforms,”
IEEE Transactions on Circuits and Systems II, vol. 44, no. 2,
1997, pp. 129–132.

29. K.K. Parhi and T. Nishitani, “VLSI Architectures for Discrete
Wavelet Transforms,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 1, 1993, pp. 191–202.

30. M. Vishwanath, R.M. Owens, and M.J. Irwin, “VLSI Archi-
tectures for the Discrete Wavelet Transform,” IEEE Transac-
tions on Circuits and Systems II, vol. 42, no. 5, 1995, pp. 305–
316.

31. F. Taylor, Digital Filter Design Handbook, Marcel Dekker,
1983.

Implementation of RNS-Based Distributed Arithmetic Discrete Wavelet Transform Architectures 189

32. M. Dugdale, “VLSI Implementation of Residue Adders Based
on Binary adders”, IEEE Trans. on Circuits and Systems II, vol.
39, no. 5, 1992, pp. 325–329.

33. M. Griffin, F.J. Taylor, and M. Sousa, “New Scaling Algorithms
for the Chinese Remainder Theorem,” in Proc. of the 22nd Asilo-
mar Conf. on Signals, Syst. and Comp., CA, 1988.

Javier Ramı́rez received the M.A.Sc. degree in Electronic Engi-
neering in 1998, and the Ph.D degree in Electronic Enginnering in
2001, all from the University of Granada. Since 2001, he is an Assis-
tant professor at the Dept. of Electronics and Computer Technology
of the University of Granada (Spain). His research interest includes
residue number system arithmetic, high performance digital signal
processing and FPGA and VLSI signal processing systems. He has
authored more than 50 technical journal and conference papers in
these areas. He has served as reviewer for several international jour-
nals and conferences. He is a member of IEEE, and a SP and C&S
Society member.
javierrp@ugr.es

Antonio Garcı́a received the M.A.Sc. degree in Electronic Engi-
neering (being awarded the Nation Best Academic Record) in 1995,
the M.Sc. degree in Physics (majoring in Electronics) in 1997 and
the Ph.D. degree in Electronic Engineering in 1999, all from the
University of Granada (Spain). He was an Associate Professor at the
Department of Computer Engineering of the Universidad Aut¢noma
de Madrid before joining the Deparment of Electronics and Computer
Technology at the University of Granada as an Associate Professor.
His research interests include Residue Number System arithmetic,
the application of RNS to high-performance digital signal processing,
VLSI and FPL implementation of RNS-based systems and the use of
RNS for low-power VLSI systems. He has authored over 50 techni-
cal papers in international journals and conferences and has served
as reviewer for several international journals and conferences. He is
a member of IEEE and a C, C&S and SP Society member.
agarcia@ditec.ugr.es

Uwe Meyer-Bäse received his BSEE, MSEE, and Ph.D. “Summa
cum Laude” from the Darmstadt University of Technology in 1987,
1989, and 1995, respectively. In 1994 and 95 he hold a post-doc posi-
tion in the “Inst. of Brain Research” in Magdeburg. In 1996 and 1997
he was a Visiting Professor at the University of Florida. From 1998
to 2000 Dr. Meyer-Baese worked in the ASIC industry. He is now
a Professor in the Electrical and Computer Engineering Department
at Florida State University. During his graduate studies he worked
part time for TEMIC, Siemens, Bosch, and Blaupunkt. He holds
3 patents, has supervised more than 60 master thesis projects in
the DSP/FPGA area, and gave four lectures at the University of
Darmstadt in the DSP/FPGA area. He is author of three books in-
cluding “Digital Signal Processing with Field Programmable Gate
Arrays” and “Fast Digital Signal Processing” published by Springer-
Verlag. He received in 1997 the Max-Kade Award in Neuroengineer-
ing. Dr. Meyer-Baese is a IEEE, BME, SP and C&S society member.
Uwe.Meyer-Baese@ieee.org

Fred J. Taylor received his BSEE degree from the Milwaukee School
of Engineering in 1965; MS and Ph.D. degrees form the University
of Colorado in 1965 and 1969 respectfully. He was a Member of
the Technical Staff of Texas Instruments Corp. (1969/70), held aca-
demic positions at the University of Texas at El Paso (1970/75),
University of Cincinnati (1975/83), and the University of Florida
since 1983, where he is currently a professor of Electrical and Com-
puter Engineering (ECE) and Computer and Information Science
Engineering (CISE). He has held other visiting academic appoint-
ments at Southern Methodist University, CNAM (Paris), and THD
(Darmstadt). He serves as a consultant to a number of Fortune 500
companies as well as government agencies. He has authored ten
textbooks, twelve-chapter contributions for handbooks in the field
of signal processing and encyclopedias, and three U.S. patents. Dr.
Taylor has also authored over 100 archived journal articles. He is the
co-founder of the Athena Group inc. in 1986, a DSP semiconductor
silicon intellectual property company, where he now serves as the
Chairman of Board.
fjt@hsdal.ufl.edu

190 Ramı́rez et al.

Antonio Lloris received the M.Sc. Degree and the Ph.D. degree
from the Universidad Complutense (Madrid). He was at the Centro

de Investigaciones Tcnicas de Guip£zcoa (Spain) as a researcher and,
as a lecturer, at the Escuela Tcnica Superior de Ingenieros Industriales
de San Sebastin. He was at the Universities of Malaga and Murcia
(Spain). Now he is a Full Professor at the University of Granada
(Spain). His research interest include multiple-value logic, testing
of digital circuits and signal processing using the residue number
system.
lloris@ditec.ugr.es

