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Abstract - The design of high-performance, high-precision, real-time digital signal
processing (DSP) systems, such as those associated with wavelet signal processing, is a
challenging problem. This paper reports on the innovative use of the residue number
system (RNS) for implementing high-end wavelet filter banks. The disclosed system
uses an enhanced index-transformation defined over Galois fields to efficiently support
different wavelet filter instantiations without adding any extra cost or additional look-
up tables (LUT). An exhaustive comparison against existing two’s complement (2C)
designs for different custom IC technologies was carried out. These structures
demonstrated to be well suited for field programmable logic (FPL) assimilation as well
as for CBIC (cell-based integrated circuit) technologies.

INTRODUCTION

There is a growing demand for digital image processing to be performed at
greater real-time bandwidths, with higher precision and lower complexity. Since
these systems are intrinsically SAXPY (S=AX+Y) dominant, advanced solutions
must overcome existing arithmetic limitations. An arithmetic system capable of
surmounting this barrier is the residue number system, or RNS. Computer
arithmeticians have long held that the RNS offers a distinct MAC (multiply and
accumulate) speed-area advantage [1] in SAXPY-intensive applications. In [2], the
RNS was used to design a wavelet transform using field-programmable logic
(FPL). The design was compared to a two’s complement (2C), and distributed
arithmetic (DA) implementation. The RNS solution was found to be superior to the
2C case and compared favourably with the DA instantiation, but unlike a DA
design, was fully programmable. Another demonstration of the RNS benefits is
found in [3] for use in orthogonal wavelet filter bank applications. The filter banks
were designed to accept 8-bit input signals, process using 10-bit coefficients, and
ran 23.45% and 96.58% faster than a 2C design for one and two octaves,
respectively. A weakness of the reported RNS solution was that fixed coefficient
multiplication was mapped into look-up tables (LUTs). Consequently, the tables
needed to be re-programmed whenever a different set of wavelet coefficients were
selected. This paper explores an efficient means of obtaining efficient discrete
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wavelet transform (DWT) architectures defined over multiple filter coefficient
sets, by means of the RNS.

INDEX-BASED ARITHMETIC

In the RNS, numbers are represented in terms of a relatively prime basis set
(moduli set) P={m,, ... m;}. Any number XeZ,~{0, 1 ..., M—1}, where M=

L
Hm,- , has a unique RNS representation X¢3{X},..., X, }, where X=X mod m,. Like
i=1
the 2C system, the RNS arithmetic is exact as long as the final result is bounded
within the system’s dynamic range Z,, Mapping from the RNS back to the integer
domain is defined by the Chinese Remainder Theorem (CRT) [1]. RNS arithmetic
is defined by pair-wise modular operations:

)
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where 'Q|m denotes Q mod m;. The individual modular arithmetic operations are
j

1)
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typically performed as LUT calls to small memories. The RNS differs from
traditional weighted numbering systems in the fact that the RNS arithmetic is
carry-free and can operate at a constant speed over a wide range of precisions.

A variety of RNS multipliers are available, including pure LUT multipliers, square
root multipliers, index-transform multipliers, and array multipliers. The index-
transformation multipliers [4, 5] are based on the mathematical properties
associated with a Galois fields denoted GF(p), where p is prime. All the non-zero
elements in a Galois field can be generated by exponentiating a primitive element
denoted g;. This property can be exploited for multiplication in GF(m;) through the
use of a well known isomorphism existing between the multiplicative group 0=
{1, 2, ..., m-1}, with multiplication performed modulo ;, and the additive group
I={0, 1, ..., m-2}, with addition performed modulo (m;-1). The mapping is given
by: g = (D;' @)= g; , g€ Q, ie I and multiplication, using index arithmetic is based
]9”‘[,,..-, .
on quqklm, =g /7. Thus, the multiplication of two numbers, say ¢; and gy,

J

can be performed by adding exponents in a modular sense. The exponents, or
indexes, i; and #, can be pre-computed and stored in a lookup table or LUT.
Adding the indexes can be performed with a modulo (m;-1) adder, and the inverse
index transformation of j; into g; can be performed again using a LUT.

DWT SOLUTIONS

Wavelets [6] are gaining in importance, especially for use in image coding and
compression applications. The discrete wavelet transform (DWT) decomposes a
signal at increasing resolution levels (multi-scale resolution). An attractive feature
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Fig. 1. Design of an RNS-based
1-D DWT architecture with index-transformation.

of the wavelet series expansion is that the underlying multi-resolution structure
leads to an efficient discrete-time algorithm based on a filter bank implementation.
An N"-order 1-D DWT decomposition of a sequence x, is defined by:

N-1
() _ (i-1) .
a,’ = a,, i=1,2,..,J
n ;gk 20—k @)
5 Nl .
df = ¥ hal7) "= x,
=
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Fig. 2. Design of an RNS-based
1-D IDWT architecture with index-transformation.

where aff) and d,(,i) are the octave-i approximation and detail sequences,

respectively, and gy and 4, (k= 0, 1, ..., N-1) correspond to the low-pass and high-
pass analysis filter coefficients. The signal x, can be perfectly recovered through
its multiresolution decomposition by iteration:
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where g, and 17,( represent low-pass and high-pass synthesis filter coefficients.

The design of wavelet filter banks using the RNS, presents new opportunities. If
the wavelet filter coefficients are fixed a priori, the LUT-based modulo multiplier
represents the most efficient solution to meeting low-latency and hardware
efficiency. However, if the wavelet filter coefficients are to be run-time
programmable, then the solution may require an unacceptably large number of
LUTs to cover all coefficient instances. The use of index-transformation
multipliers [4, 5] and re-timing techniques leads to DWT filterbanks designs

requiring a single 2" xn ; LUT for each filter coefficient, where n= [ logz(mj)-| is

the modulus wordwidth. Figure 1 shows the design based on index transformations
of a modulo m; channel, for an octave-i 8-tap decomposition filter bank. The input

sequence af,i"l)l is decomposed into even and odd sequences that are converted
m,
4

to the index-domain by means of two LUTs storing the @ ; function. Some

circuitry is added to the input to detect zero values of the input sequences. The
reason for this is that multiplication by zero is not defined in the index domain and
must be considered to be a special case. Notice that clearable registers have been
added to make zero the filter products in case zero is detected in the even- and
odd-indexed sequences. After the filter products are computed in the index-

domain, the LUT storing the function d);l maps the indexes back to the RNS

domain, and the remaining filtering or addition stage is carried out by a modular
adder tree.

The system exhibits symmetry for the computation of the approximation and detail
sequences. The complete RNS design consists of a number of parallel channels
whose combined wordwidth suffices to insure that the solution dynamic range
requirements are met [4, 5].

In a similar manner, an architecture based on index-transformation may be derived
for the reconstruction (synthesis) filter bank. The resulting architecture for the 1-D
IDWT is shown in Figure 2.

RESULTS AND DEVELOPMENT

An 8-tap 1-D DWT filter bank was used to illustrate the design of 2C and RNS-
based system. The comparison was carried out using VHDL models over Altera
FLEXI10KE field programmable logic (FPL) devices and two standard cell ASIC
technologies. The selected ASIC reference libraries were the 0.8um MSU SCMOS
and the Chip Express 0.35um triple-level metal CX3003 CMOS technologies. The
0.8um MSU SCMOS cell library consists of a set of gates implementing low-level
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logic functions. The Chip Express 0.35um CMOS CX3003 technology is based on
the definition of a high-level module that can be configured to operate in a very
wide range of simple and complex circuit functions and combinations. The logic
module is a universal function composed of three multiplexers and one AND gate.
It is based on the fact that a multiplexer can implement any logic function, which
may be either combinatorial or sequential.

Table 1 shows the total area and maximum sampling rate obtained for 8-tap RNS
and 2C designs using 0.8um and 0.35um CBIC technologies. The solution adopted
here for the 2C arithmetic DWT architecture was to use pipelined 2C multipliers
based on Booth encoding and Wallace trees [7]. Hardware complexity and delay
rapidly increase as the precision of the input and coefficients increases. These facts
are shown in Table 1 and Figure.3. Note that performance is considerably higher
for an RNS-based solution than for a 2C design. In order to maximize the sample
rate gain, small wordwidth channels are desirable. However, only prime moduli
are suitable for use in an index arithmetic system. For a 5-bit modulus set, the only
admissible moduli are {17, 19, 23, 29, 31} which leads to a 22.7-bit maximum
dynamic range. With a 6-bit modulus set, the dynamic range can be up to 39 bits
using the moduli set {37, 41, 43, 47, 53, 59, 61}. The use of a 6-bit modulus set
was found to be attractive for the designs demanding 23-, 27- and 29-bit outputs,
while for the design with a 21-bit output a 5-bit modulus set is more efficient in
terms of area and speed. The efficient hardware implementation of modulo
multiplication by means of index transformations reveals 2C and RNS-based
systems to have similar hardware complexities, while an RNS solution will take
advantage of higher speed and better ASIC routability inside each channel. Table 2
shows the total resources required and maximum sampling rate obtained for a 4-
tap DWT filter bank using a grade —1 Altera FLEX10KE FPL device, as well as
the moduli selected to cover the dynamic range. Figure 4 shows the sampling rate
as a function of the output precision. The use of 5- and 6- bit modulus set was
found to be an attractive choice since performance is only limited by the LUT
operation.

2C RNS
wordwidths Area Area
modulus set (um” or F(MHz) (um? or F(MHz)
#modules) #modules)
0.8um | 0.35um | 0.8um | 0.35um § 0.8um | 0.35pm | 0.8um | 0.35um
[8,10,21]
{3129.23.19,17} 748608 | 19810 | 106.38 | 367.65 | 820360 | 29500 |209.64 | 584.80
[10,10,23]
(61,59,53.47} 855016 | 21849 | 105.71 | 353.36 § 910688 | 36436 {188.32| 515.46
{12,12,27}
(61,59.53 47,43} 1026864 | 25507 | 86.43 | 293.26 } 1138360 | 45545 | 188.32 | 515.46
{14,12,29]
(61,59,53.47,43.41) 1111376 | 28441 | 84.89 | 223.21 | 1366032 | 54654 | 188.32 | 515.46

Table 1. Total area and maximum sampling rate obtained for an 8-tap DWT filter
bank. Note, [x,y,z] represents x-bit input, y-bit coefficients and z-bit output.
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Fig. 3. Sampling rate as a function of the output precision for index-based and 2C
arithmetic 1-D DWT filter banks implemented by means of CBIC technologies.

2C RNS
dwidth
:lvl(:)l;luvlv\:s se: #EABs #EABs
#LEs | (Memory | F(MHz) | #LEs | (Memory | F(MHz)
bits) bits)
[8.9,19] ax10
(61,59,5347) | 3470 0 3006 | 4314 | ([Gep | 13513
[8,10,20] <10
(61,59,53.47) | 3440 0 3816 | 4014 | (G | 13513
[9,10,21] 10
(61,59,53473 | %Y 0 3424 | 9314 1 15360 | 1353
[10,10,22] 10
(61,59,5347) | 4334 0 3067 | #3141 (15360) | 13513
[12,12,26] 10
(61,59.53.47,43) | 344 0 2793 | 9314 | oo | 13513
[13,12,28] T
(61,59.53.47.43) | °7? 0 2695 | 5314 | g | 13513

Table 2. Total resources required and maximum sampling rate obtained for a 4-tap
DWT filter bank on an Altera FLEX10KE device (grade —1). Note, [x,,z]
represents x-bit input, y-bit coefficients and z-bit output.
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Fig. 4. Sampling rate as a function of the output precision for index-based and 2C
arithmetic 1-D DWT filter banks implemented with FPL devices.

BINARY-TO-RNS AND RNS-TO-BINARY CONVERTERS

Binary-to-RNS conversion can be carried out efficiently by decomposing the
B-bit 2C word, say x, into a weighted sum of smaller words X; (e.g., 4-bit words).
Equation (4) exemplifies the case where a 4-bit decomposition is considered:

B2 s ] @
=2, w32k =28, + )R 2"

1=0 oy i=0

X|

The implementation of Equation (4) requires only 24xnj LUTs.

RNS-to-binary conversion implies the use of a CRT (Chinese Remainder
Theorem)-based converter. However, CRT conversion can often be a barrier in
certain applications. The auto-scaling RNS-to-binary converter (e-CRT) proposed
by Griffin et al. [8] can overcome these drawbacks by using a few LUTs and
binary (modulo 2") adders. For a scaled #-bit binary output, and a n,-bit modulus
set, this converter needs one 2”xn LUT for each modulus of the RNS and a n-bit
adder tree. This solution results more appropriate for most applications demanding
high data rates [9]. Table 3 shows the area requirements for the binary-to-RNS and
RNS-to-binary converters. As a result, the high throughput advantage of the
presented RNS architectures over 2C designs is not degraded when converters are
inserted in the system.
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Binary-to-RNS / RNS-to-binary converters
Area requirements

Filter bank precisions and 0.8 pm MSU 0.35 um CX3003
modulus set N
CA/NCA (um”) CA/NCA (#modules)
BIN—>RNS RNSSBIN 1 iy g | RNS—BIN
(#stages) 16-bit output (Hstages) 16-bit output
(#stages) (#stages)

8,10, 21]

(31,29,23,19, 17} 8696/4200 (2) | 24252/15845(4) | 180/85 (2) | 502/361 (4)
(10, 10, 23]

(61,59, 53,47} 14893/6045 (2) | 43378/23457(4) | 314/119(2) | 910/534 (4)
(12, 12, 27]

(61, 59, 53,47, 43} 19545/7582 (2) | 54878/29345(4) | 412/152(2) | 1137/668 (4)
[14, 12, 29]

(61,59.53,47. 43,41) | 23587/9280(2) | 6489734920 (4) | 490186 2) | 13641795 (4)

Table 3. Area required for binary-to-RNS and e-CRT RNS-to-binary converters.

CONCLUSION

This paper reports on the design and implementation using FPL and CBIC
technologies of forward and inverse wavelet filter banks by means of the RNS.
The architecture is based on index-transformation over Galois fields, and requires
a single LUT for each filter coefficient multiplication. Efficient circuitry is used to
detect a zero value in the input sequence, a requirement of the design paradigm.
The RNS design was compared to 2C architectures of comparable size. The
reported methodology demonstrated a sustained performance improvement over
2C designs.
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